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Abstract

From Diversity to Adaptivity: Effective Multitask Learning

and Continual Learning Neural Architectures

Bo Liu, PhD
The University of Texas at Austin, 2025

SUPERVISORS: Peter Stone, Qiang Liu

Despite remarkable successes from recent advances in deep learning, there

remain many challenges. This dissertation focuses on two specific challenges: effectively

optimizing a linear combination of multiple loss functions and enabling continual

learning for deep neural networks.

The first part of the thesis addresses the challenge of optimizing loss functions

composed of heavily conflicting components. In deep learning, it is common practice

to optimize a combination of several loss functions to satisfy multiple desiderata.

However, standard optimization techniques can lead to poor local minima for these

problems, as different loss functions often conflict with one another. A few loss

functions with dominating gradients may tend to be disproportionately optimized,

thereby dictating the entire optimization trajectory. To mitigate this issue, we propose

a method to quantify the local conflict and design algorithms that minimize the overall

loss following trajectories that achieve a more balanced descent of the individual

sub-losses. Empirical results demonstrate that these methods produce better local

minima.

The second focus of the dissertation is on continual learning, enabling deep

networks to autonomously adapt. Traditional deep learning models become static after
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training. We present two methods to overcome this limitation: dynamically expanding

the network’s architecture in response to new data, and designing architectures that

inherently support online learning. These innovations allow networks to autonomously

update and adapt over time, reducing the need for frequent retraining.

Together, these efforts take steps to enable deep learning models to learn from

diverse loss functions and adapt continually to new data and problems.
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Chapter 1: Introduction

In recent years, deep learning has made substantial progress. With advances

in computational power and the scale of models, deep neural networks have shown

impressive results in various applications, including natural language understand-

ing (Achiam et al., 2023) and photorealistic image generation (Rombach et al., 2021).

For instance, models like the Generative Pretraining Transformer (GPT) (Achiam

et al., 2023), which predict the next token in English text using an autoregressive

objective, have successfully engaged in complex dialogues with humans.

Despite the success of deep learning, many research challenges remain and may

even be growing. In particular, there are optimization challenges related to effectively

optimizing deep networks given a loss function and neural network architecture;

architecture challenges in designing better neural networks for specific applications;

and learning challenges in developing improved learning frameworks, objectives, and

methodologies to enable more efficient and effective learning.

This dissertation focuses on addressing two specific challenges: the effective

optimization of complex loss functions composed of multiple conflicting sub-loss

functions, and enabling continual learning in neural networks.

Conflict-Averse Optimization The first part of this dissertation addresses the

challenge of optimizing neural networks with complex loss functions composed of

multiple, often conflicting sub-losses. In deep learning, it is common to optimize a linear

combination of multiple loss functions to balance competing criteria. Examples include

trading off model performance against complexity, balancing reward optimization

with exploration in decision-making, learning a single model across multiple tasks

(multitask learning), or training a model capable of handling different data modalities

(multimodal learning).
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Taking multitask learning as an example, the standard approach is to optimize

a linear combination of task-specific losses, e.g., the average loss, with the hope

of leveraging shared structures among tasks for efficient learning. However, when

task losses conflict—indicated by highly negatively correlated gradients—optimizing

the average loss can result in a challenging optimization landscape. In such cases,

conventional optimizers like gradient descent or Adam (Kingma and Ba, 2014) often

lead to bad local minima with high average loss, where only a few task losses are

adequately optimized while others lag significantly.

Previous research has highlighted the issue of conflicting gradients (Yu et al.,

2020a) as a key factor in this phenomenon: at each optimization step, the gradients

of certain loss functions can dominate, leading the optimization trajectory toward a

model that disproportionately optimizes a limited subset of the tasks. To address this,

the first part of the dissertation focuses on mitigating the conflicting gradients issue to

maintain a more balanced progression among all loss functions. Our approach involves

quantifying the extent of conflict at each optimization step and developing algorithms

that adjust update directions to optimize all losses more evenly while ensuring the

descent of the main loss (typically the average). Empirical observations suggest that

these methods can lead to better local optima for the linearly combined loss function.

For example, in multitask learning, we observe that the proposed algorithms can steer

the optimization trajectory toward solutions with a lower average loss.

Continual Learning The second challenge this dissertation focuses on is continual

learning, also known as online learning or lifelong learning, enabling neural networks

to learn continuously. Most contemporary deep learning models are trained once and

deployed statically, even though they continue to generate and encounter new data.

Updating such models often requires expensive retraining.

This dissertation explores two strategies to equip neural networks for continual

adaptation. The first method proposes expanding the network’s architecture dynami-

cally, by navigating the steepest descent in the parameter space of all architectures
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rather than in the parameter space given a fixed architecture. This approach allows

networks to expand in response to new problems or when they reach their learning

capacity—where they no longer effectively learn from data. The second method

focuses on neural networks that inherently integrate online learning as a part of the

neural architecture, enabling them to update autonomously at deployment as they

process new inputs. The main idea is to link the solution of a per-step online learning

objective to the recurrent update of a recurrent neural network. Therefore, designing a

recurrent network reduces to designing an online learning objective. The last step is to

identify a good online learning objective. Prior research has argued that transformer

models (Vaswani et al., 2017), the most commonly used deep neural architecture

in modern deep learning, are powerful because they have strong associative recall

ability (Olsson et al., 2022), the ability to retrieve values from their corresponding

keys after the model observes a sequence of key-value pairs. Hence, we adopt an online

associative recall objective and use its per-step closed-form solution as the design of a

recurrent network that learns to learn online.

1.1 Contributions

In summary, this dissertation focuses on addressing the following question:

Thesis Question (TQ): How can one train a neural network that fulfills
multiple desiderata and learns continually?

To address this question, the dissertation presents the following contributions:

• (C1) Efficient Algorithms for Mitigating Conflicting Gradients We

present a way to quantify the amount of conflict at each optimization step when

a linear scalarization of multiple loss functions is optimized. Then we propose a

method to mitigate this local conflict. Building on this framework, we introduce

a second approach that enhances computational efficiency by eliminating the

need to compute and store all objective gradients explicitly.
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• (C2) An Algorithm for Growing Deep Neural Networks We present an

algorithm for dynamically expanding neural networks, allowing a neural network

to enlarge its capacity when it reaches learning capacity, or when it needs to

adapt to new data/tasks.

• (C3) A Recurrent Sequence Model that Learns to Learn Online We

present a unified framework that reinterprets the recurrence update in recurrent

networks as solving an online learning objective. As a result, we design a novel

recurrent model from solving an online memory compression objective, the online

associative recall. After training, the model by design continually modifies its

memory state when it observes new data.

The first contribution addresses the first part of the thesis question (How can one

train a neural network that satisfies multiple desiderata), and the second and third

contributions address the second part of the research question (how can one train a

neural network that learns continually). Note that the strategies developed from the

two parts shall in principle be used simultaneously.

1.2 Dissertation Structure

The dissertation is structured as follows.

• Chapter 3: This chapter introduces Conflict-averse Gradient Descent (CAGrad),

which quantifies and mitigates the local conflict happened during optimizing a

linearly combined multiple loss functions.

• Chapter 4: Building upon CAGrad, this chapter presents the Fast Adaptive

Multitask Optimization (FAMO), which improves the computation efficiency of

CAGrad by eliminating the need to compute and store gradients from different

loss functions.

23



• Chapter 5: This chapter introduces Firefly, a general framework designed to

facilitate the growth of neural networks. Firefly strategically adds new neurons

to the network when it approaches its learning capacity or when there is a need

to train on new datasets while preserving performance on previously learned

data. We add new neurons by finding the best candidate architecture that

decreases the loss near the functional neighborhood of the current architecture.

• Chapter 6: This chapter introduces a general framework that views the design

of recurrent models as solving online learning problems. In particular, the

recurrent update of a recurrent network can be derived from explicitly solving

certain online learning problems. Based on this insight, we introduce a deep

sequence model, Longhorn, that consists of a stack of linear recurrent models

(a.k.a., state space models) and feedforward networks. Longhorn by design solves

the online associative recall problem. As the architecture incorporates online

learning by design, it can extrapolate to context length longer than it sees during

training. Moreover, as it is a recurrent model, the inference cost remains linear

in the sequence length, in contrast to the quadratic cost of the Transformer

model, which is the building block of modern foundation models.

• Chapter 7: This chapter provides an overview of related papers and existing

efforts.

• Chapter 8: This chapter provides a summary of the contributions, and points

out several promising future directions.
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Chapter 2: Background

This chapter provides the necessary background behind the thesis contributions.

We discuss the background on multiobjective (or multitask) learning in Section 2.0.2,

continual learning in Section 2.0.3, and sequence modeling in Section 2.0.4.

2.0.1 Notation

Throughout this work, we use k to denote the number of objectives (or loss

functions). Unless otherwise specified, we assume the model is a deep neural network

fθ, where θ ∈ Rm represents the model’s parameters as a concatenated m-dimensional

vector. In other words, θ corresponds to the flattened set of learnable neural network

weights, with m potentially reaching millions or even billions for large-scale deep

networks. We use ℓ(θ) to denote the learning objective (or loss function) for training

θ. In a supervised learning setting, we are given a dataset of input and label pairs,

i.e., D = {x, y}. Hence, ℓ(θ) = E(x,y)∼D[l(x, y; θ)], where l is the per-data loss (e.g.,

ℓ2 loss in regression or cross-entropy loss in classification). If multiple objectives

exist (e.g., from different tasks, datasets from different domains, or simply different

criteria), we use ℓi(θ) to denote the i-th objective. We use [k] to denote {1, 2, . . . , k},
the set of positive integers up to k. We use ℓ0(θ) to denote the average loss across

all objectives: ℓ0(θ) = 1
k

∑
i∈[k] ℓi(θ). Throughout the dissertation, we assume all

objectives are continuous and differentiable, and use gi as the abbreviation for the

objective gradient ∇ℓi(θ). Similarly, g0 is ∇ℓ0(θ) = 1
k

∑
i∈[k] gi. We use ⟨a, b⟩ and a⊤b

interchangeably as the inner-product between vectors a and b in Rm, i.e., ⟨a, b⟩ =∑m
j=1 ajbj . In addition, we use Sk to denote the probability simplex in k-th dimension,

i.e., Sk = {w ∈ Rk |∑i wi = 1, ∀i, wi ≥ 0}.
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2.0.2 Multiobjective Learning

Fortunately, all of the above can be formulated within a single problem, known

as the multiobjective learning problem (Sawaragi et al., 1985). In multiobjective

learning (or multiobjective optimization), for a given model fθ, θ ∈ Rm, there exists k

objectives ℓ1, . . . , ℓk, where each ℓ : Rm → R is a function that assigns θ a scalar loss

(lower the better).1 The problem is therefore

min
θ∈Rm

(
ℓ1(θ), . . . , ℓk(θ)

)
∈ Rk. (2.1)

Note that here the thing inside the parenthesis is a vector in k-dimension, hence

multiobjective optimization is optimizing a vector objective.

Multitask Learning as Multiobjective Learning Throughout the thesis, we will

use multiobjective and multitask learning (Caruana, 1997a) interchangeably. While

multitask learning generally refers to training a single model with parameters θ that

performs well across k tasks, the exact definition of a task can vary depending on the

application. To unify the terminology, we frame each task as being associated with a

specific objective function ℓi(θ). Consequently, we treat multitask learning as a special

case of multiobjective learning, where each task corresponds to an objective function.

Throughout this dissertation, we primarily focus on the optimization challenges that

arise from this perspective.

In multiobjective optimization, as formulated in (2.1), it is generally not guar-

anteed to find a feasible solution that minimizes all objective functions simultaneously.

Consequently, the focus shifts to Pareto optimal solutions—solutions that cannot

be improved in any objective without causing a degradation in at least one other

objective. This concept leads naturally to the formal definition of Pareto Optimality.

1If some objective function is to be maximized, it is equivalent to minimizing its negative or
inverse.
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Definition 2.0.1 (Pareto Optimality (Pareto, 1906)). In a k-objective learning problem

with loss functions ℓ1, . . . ℓk, we say θ1 dominates θ2 (denoted as θ1 ≻ θ2) if

∀i ∈ [k], ℓi(θ1) ≤ ℓi(θ2), and ∃j ∈ [k], ℓj(θ1) < ℓj(θ2).

Then, we say θ is Pareto-optimal, if

∄ θ′ ∈ Rm, θ′ ≻ θ.

When one works with non-convex differentiable objectives, it is more reasonable

to seek local Pareto optimal points, which are the Pareto stationary points.

Definition 2.0.2 (Pareto Stationary Points). For a k-objective learning problem with

differentiable loss functions ℓ1, . . . ℓk in Rm, we say θ is Pareto stationary if

min
w∈Sk

∥∥∥∥∥∑
i

wi∇ℓi(θ)

∥∥∥∥∥
2

2

= 0.

Here, Sk denotes the probability simplex in k dimension.

It is easy to tell that from the definition of Pareto optimality, it often leads to

a set of solutions with k > 1 (even if each ℓi is convex). In other words, in principle,

within the Pareto optimal solutions, one cannot tell which solution is better.

Finding the entire Pareto optimal set can be challenging. In practice, people

are satisfied with a single-point Pareto optimal solution. In fact, instead of optimizing

the vector loss in (2.1), one often optimizes the average loss ℓ0(θ) = 1
k

∑k
i=1 ℓi(θ).2 We

can show that the optimum of ℓ0 is always Pareto optimal.

Theorem 2.0.3 (Optimum of ℓ0 is Pareto Optimal). Assume θ ∈ arg minθ′ ℓ0(θ
′) =

1
k

∑k
i=1 ℓi(θ

′), then θ is Pareto optimal.

2Although optimizing ℓ0 is common, we will show that such practice can lead to practical
optimization challenge in Section 2.0.2.
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Proof. Assume otherwise, there exists θ′ ≻ θ, then we have

ℓ0(θ
′) =

1

k

k∑
i=1

ℓi(θ
′) <

1

k

k∑
i=1

ℓi(θ) = ℓ0(θ).

The inequality follows from the definition of Pareto optimality. This above contradicts

the fact that θ is an optimal solution to ℓ0. Therefore θ has to be Pareto optimal.

Challenge in Multiobjective Deep Learning When we move to deep learning,

where fθ is a deep neural network with non-linear activations, the loss functions ℓi(θ)

will be highly non-convex in terms of θ. In deep learning, there is no closed-form

solution for θ even under the single-objective case; therefore, iterative methods like

gradient descent are often used to find the ideal θ. For instance, θt+1 ← θt − ϵ∇θℓ(θ),

where ϵ is the step size of gradient descent. However, gradient descent and its variants

can only guarantee convergence to stationary points (or local minima) of the loss

function. Therefore, minimizing ℓ0 when θ are the weights of a deep neural network

ends up in local minima of ℓ0. While this seems okay at first glance, it is empirically

observed that the local minimum found by gradient descent for ℓ0 in deep learning (Yu

et al., 2020a), though it is Pareto stationary, can be Pareto suboptimal.

While this phenomenon lacks a solid theoretical understanding, here we aim to

provide a thought experiment that offers intuition as to why this could happen.

It is known that the loss landscape for deep learning is highly non-convex (Li

et al., 2018). For each objective function ℓi, there may exist multiple low-loss regions.

However, during the optimization of ℓ0 with gradient descent, the gradients of different

objective functions vary in norm and direction. Therefore, it is possible that one or

more objective functions dominate the learning process. For instance, if g1 = ∇θℓ1(θ)

contributes to the vast majority of g0 = ∇θℓ0(θ), then it is possible that ℓ1 is mainly

optimized at the expense of others. But recall that there are multiple low-loss regions

for ℓ1; the learned model might end up in a low-loss region for ℓ1 that is not a low-loss

region for the other objective functions, while still being Pareto stationary.
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We emphasize that the above is only a thought experiment inspired by empirical

observations of multiobjective deep learning and does not have a solid theoretical

justification, as the exact learning mechanism of deep learning, even in a single-

objective setting, remains unclear. However, based on this intuition, one might see

that to better optimize even the ℓ0, it is critical to ensure that no single objective

function dominates the optimization trajectory.

More concretely, we can focus on the local update of multiobjective learning.

Assume we update the model parameter θ in an iterative fashion (as in standard

(stochastic) gradient descent):

θt+1 ← θt − ϵdt.

Here, θt is the model’s parameter at time t, and dt ∈ Rm is the update vector, and ϵ

is the step size. Then we can say that at least locally, a conflict among objectives

happens if the update leads to an ascent in any objective function, which is called the

conflicting gradients phenomenon (Yu et al., 2020a). Formally, we define the following.

Definition 2.0.4 (Conflicting Gradients (CG)). At time t, assume we update the

model parameter via

θt+1 ← θt − ϵdt.

Then we say conflicting gradients happens if

∃i ∈ [k], ⟨∇ℓi(θt), dt⟩ < 0.

Assume the step size ϵ is sufficiently small, by doing a first-order Taylor

expansion, we can tell that

ℓi(θt+1) ≈ ℓi(θt)− ϵ ⟨∇ℓi(θt), dt⟩︸ ︷︷ ︸
<0

> ℓi(θt).

Thus, when CG occurs, updating in the direction of dt results in at least one loss

objective ℓi worsening.
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It is important to note that CG is common in stochastic optimization when

gi = ∇ℓi is replaced by a noisy gradient estimate. For instance, even if all gi are

the same, their stochastic versions ĝi = gi + ξi, where ξi are stochastic noise, might

conflict with each other. However, such conflicts are not persistent, in the sense that

in expectation they do not conflict. In contrast, when CG consistently occurs for one

or more objectives, it becomes problematic. By mitigating CG locally, we can ensure

that, over the course of the optimization trajectory, the objectives are more balanced

in their optimization progress compared to cases where CG is left unaddressed.

2.0.3 Continual Learning

Continual learning (CL), also known as lifelong learning or online learning,

is concerned with learning sequentially over time, potentially even with a changing

objective. In particular, the agent encounters t data points (or datasets) sequentially,

with its corresponding loss function ℓt(θ). Then the learning objective is to minimize

the following (Lopez-Paz and Ranzato, 2017)

min
θ

ℓt(θ)︸︷︷︸
plasticity

s.t. ∀s < t, ℓs(θ)− ℓs(θt−1)︸ ︷︷ ︸
stability

≤ 0. (2.2)

In essence, our goal is to identify model parameters that simultaneously minimize the

current loss objective—a capability referred to as plasticity, which denotes the ability

to acquire new knowledge—while preserving the information learned from previous

tasks, known as stability, which is the capacity to retain existing knowledge (Mermillod

et al., 2013). In general, ℓt is not the same as ℓs when s ̸= t, due to shifts in input data

or evolving loss objectives. Under this setting, continual learning can be considered

an online extension of multiobjective learning.

In the context of online learning, specifically online convex programming (Azoury

and Warmuth, 1999; Zinkevich, 2003), the goal is slightly modified to minimize the

overall regret. In particular, the agent gets to choose θt from a convex set Θ at each

time step. After θt is chosen, the loss is revealed as ℓt(θt), where ℓt is also convex.
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The goal is to minimize the sum of losses
∑

s≤t ℓs(θs), and the regret is computed as

Rt =
∑
s≤t

ℓs(θs)−min
θ

∑
s≤t

ℓs(θ). (2.3)

In practice, standard practice to design an online convex programming algorithm has

to update the parameters θ as a trade-off between plasticity and stability (Zinkevich,

2003; Kulis and Bartlett, 2010):

min
θ

ℓt(θ)︸︷︷︸
plasticity

+ βtD(θ, θt−1)︸ ︷︷ ︸
stability

, (2.4)

where ℓt is often a convex function, and D(·, ·) denotes certain convex divergence that

measures the similarity between θ and θt−1 (e.g., the ℓ2 distance). Note that, (2.4) is

very similar to (2.2) in the sense that they both try to balance stability and plasticity

as the agent learns online.

Remark An important limitation of contemporary large foundation models is

that they cannot continually adapt. Once trained, the model weights are fixed for

deployment. To achieve general intelligence, it is critical that these models can

autonomously update themselves over time. There are three main types of methods

in continual learning: 1) regularization-based methods that directly solve the (2.2) or

(2.4) from an optimization perspective (Kirkpatrick et al., 2017; Chaudhry et al., 2018a;

Schwarz et al., 2018; Aljundi et al., 2019), 2) replay-based methods that replay the old

data together with the new data (Chaudhry et al., 2019; Lopez-Paz and Ranzato, 2017;

Chaudhry et al., 2018b; Buzzega et al., 2020), and 3) architectural growth methods

that gradually expand the network to learn new tasks (Rusu et al., 2016; Yoon et al.,

2017; Mallya et al., 2018; Rosenfeld and Tsotsos, 2018; Mallya and Lazebnik, 2018;

Hung et al., 2019b,a; Wu et al., 2020a), while minimally changing existing learned

parameters. We discuss these methods in detail in Chapter 7. In practice, methods

under category 1 often struggle to retain previously learned knowledge effectively.

Category 2 methods outperform regularization-based approaches but necessitate
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storing past data. Architectural growth methods in Category 3 typically perform best

at retaining prior knowledge but tend to lose plasticity and thus are insufficient to

achieve true online learning. For a comprehensive survey of existing continual learning

methods, we refer the reader to two survey papers (Van de Ven and Tolias, 2019;

Delange et al., 2021).

2.0.4 Sequence Modeling

Since the introduction of the Transformer architecture (Vaswani et al., 2017),

sequence modeling has become a versatile framework applied across various domains

of deep learning, playing a significant role in the development of large-scale models.

While natural language is naturally suited to sequence modeling, recent progress has

shown that this approach can also be effectively adapted for tasks in image and video

processing (Dosovitskiy et al., 2020; Arnab et al., 2021), where spatial information

is organized sequentially. Similarly, domains such as robotics and reinforcement

learning are increasingly exploring Transformer-based architectures for tasks involving

decision-making and control (Chen et al., 2021).

In the following sections, we provide an overview of autoregressive sequence

modeling, a key principle underlying the success of models like ChatGPT (?). Then, we

will examine existing sequence modeling neural architectures, including the Transformer

model, recurrent neural networks (RNNs) like the Long Short-Term Memory (LSTM),

and more recent developments in Deep State Space Models (SSMs), and discuss their

pros and cons. Specifically, we examine the strengths that establish the Transformer

as a state-of-the-art architecture over traditional recurrent networks and its limitations

in supporting continual learning.

Autoregressive Sequence Modeling Autoregressive sequence modeling focuses

on predicting each token in a sequence based on its preceding tokens, ensuring that

the model adheres to a causal structure where future tokens are not used to predict
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the current one. The primary goal is to learn a model that maximizes the likelihood

of sequences observed in a given dataset.

Formally, let D = {(x(i)
1 , x

(i)
2 , . . . , x

(i)
T )}Ni=1 represent a dataset containing N

sequences, each comprising T tokens from a finite vocabulary (e.g., x ∈ V ). The task

is to learn a generative model fθ, parameterized by θ, that captures the underlying

distribution of sequences in D. The key characteristic of an autoregressive model

is its causal nature: the probability of each token depends only on the tokens that

precede it, without any access to future tokens. The joint probability of a sequence is

decomposed into the product of conditional probabilities, as follows:

p(D) =
N∑
i=1

[
fθ(x

(i)
1 )

T∏
t=2

fθ(x
(i)
t | x(i)

<t)

]
, (2.5)

where x<t = (x1, x2, . . . , xt−1) represents the history up to (but not including) time

step t. Importantly, by training fθ to maximize the likelihood of the sequences in

D, the model learns to generate sequences that resemble those in the dataset. In

other words, the fθ is a generative model and can be applied recursively to generate

arbitrarily long sequences (if we do not consider the computation cost).

In practice, autoregressive models are widely used in natural language process-

ing, where D typically consists of large corpora of human language. The resulting

model fθ, often referred to as a language model, can then be used for text generation,

where new sequences are generated one token at a time, conditioned on previously

generated tokens. For standard autoregressive foundation models like large language

models (LLMs), their development and usage consist of three stages:

• Training Stage: Given a large dataset D of sequences (usually the internet-

scale language corpora), we train the model fθ on dataset D, by maximizing the

log-likelihood given in (2.5).

• Finetuning Stage: Given a small dataset Dft with questions and high-quality

human responses (usually labeled by human experts), we finetune the pretrained
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Sequence	Mixing
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Figure 2.1: left: a standard Transformer block in the modern Transformer
model, which consists of a self-attention layer followed by a feedforward multilayer
perception (MLP). right: the PyTorch-like pseudocode for a Transformer block.
Note that both self-attention and MLP layers adopt residual connections.

fθ on dataset Dft, either with supervised finetuning or with reinforcement learning

from human feedback (Ouyang et al., 2022), or a combination of both.

• Inference Stage: Given an initial prompt (e.g., a sequence of tokens) of

length t, the model fθ predicts the next token xt+1 conditioned on x<t+1, and

then feeds xt+1 back to the model, recursively predicting the next token, until a

certain maximum length is reached or a termination token is output.

It is important to note that the described three-stage framework reflects contemporary

standard practices and is not a definitive pathway to achieving general intelligence. In

fact, for truly continual learning systems, these stages should ideally be integrated,

enabling the model to learn dynamically after deployment, much like human learning.

Transformer (Attention-based Sequence Models) A modern Transformer

model takes input as a sequence of vectors and outputs a sequence of vectors. A

Transformer consists of several layers of Transformer blocks, and each Transformer

block involves two parts: 1) a sequence-mixing layer known as the self-attention layer,

that aggregates information over the sequence dimension, and 2) a channel-mixing
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layer known as the feedforward layer (or multilayer perception (MLP) layer), that

aggregates information over the channel (hidden) dimension (See Figure 2.1):

x← x + SA(LayerNorm(x)),

x← x + MLP(LayerNorm(x)).
(2.6)

Here, we assume x ∈ Rn×d, where n is the sequence length and d is the hidden

dimension, the MLP has 2 layers (1 hidden layer), and Attn refers to the self-attention

layer:

Q = xWq, K = xWk, V = xWv, where Wq,Wk,Wv ∈ Rd×d,

SA(x) = Softmax(
1√
d
M ⊙QK⊤)V.

(2.7)

Here, M is called the causal mask, which is a lower triangular square matrix of size

n × n that prevents token xt from seeing into the future. In practice, the SA layer

will have multiple heads, in the sense that we compute multiple Q,K, V tuples, and

conduct the softmax individually for each of them, then concatenate the outputs to

form the final output of the SA layer. For instance, assume there exists h heads:

Q = rearrange(Q, (h d′)→ h d′)

K = rearrange(K, (h d′)→ h d′)

V = rearrange(V, (h d′)→ h d′)

SA(x) = cat

(
Softmax(

1√
d′
M ⊙QiK

⊤
i )Vi, ∀i ∈ [h]

)
.

(2.8)

Here, Xi refers to the i-th row of X, e.g., Xi = Xi,:. rearrange refers to the

reshaping of a tensor (in this case, we just reshape a 1D tensor to a matrix). By having

this self-attention module, essentially Transformer stores all its past information, i.e.,

it lets the token xt at time t freely attend to any token in the past through the

attention matrix Softmax( 1√
d
QK⊤). Most importantly, the transformer architecture

is highly parallelizable, because the computation at the time step t does not need to

wait for any computation from the previous step. As a result, the transformer can be

easily scaled to very large sizes and trained on very long sequences.
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A major limitation of the Transformer model is that its inference cost is

quadratic in the sequence length t. This can be easily seen from the fact that when

the model predicts xt, the SA layer has to attend to all previous t− 1 tokens, giving

the total computation cost
∑

s≤t O(s) = O(t2). As a result, it is not clear how to

build a truly continually learning agent based on the Transformer model, as it needs

to keep all history tokens at inference, limiting the total number of tokens it can see.

Recurrent Neural Network A recurrent neural network (RNN), in its simplest

form, is

st = f(st−1, xt)

yt = o(st).
(2.9)

In this context, the function f represents the recurrent component of the model,

accepting the prior state vector st and the current input xt, and subsequently generating

the subsequent state vector st+1. The model outputs predictions based on the current

state vector st via an output function o. When training a recurrent neural network

(RNN) using backpropagation (Rumelhart et al., 1986), challenges can arise if the

sequence processed is lengthy, leading to gradients that either explode (become

exceedingly large) or vanish (tend toward zero). This phenomenon occurs because the

gradient of f involves the recursive product of Jacobian matrices associated with each

timestep. If the absolute value of the largest eigenvalue of these matrices exceeds 1,

the gradient will exponentially increase as the sequence progresses, potentially leading

to instability. Conversely, if the absolute value of the largest eigenvalue is less than

1, the gradient may diminish, impeding effective learning as deeper layers or earlier

timesteps exert increasingly negligible influence (Pascanu et al., 2012). The famous

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997b) mitigates

the gradient vanishing/exploding problem by designing a “constant error carousel” (a

variant of the residual connection (He et al., 2016) in modern terminology), and its
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Model Performance Parallelization Inference Cost

Transformer Strong Yes O(n2)
RNNs Okay No O(n)
Linear Transformer / SSM Good Yes O(n)

Table 2.1: Comparison of Transformer, RNNs, and Linear Transformer/State
Space Models based on performance, parallelization (w.r.t the sequence dimension),
and inference cost (w.r.t to the sequence length n).

per-step update is defined as:

it = σ(Wi[st−1, xt] + bi),

ft = σ(Wf [st−1, xt] + bf ),

ot = σ(Wo[st−1, xt] + bo)

Ct = ft ∗ Ct−1 + it ∗ tanh(WC [st−1, xt] + bC),

st = ot ∗ tanh(Ct).

(2.10)

Here, [a, b] denotes the concatenation of vectors a and b, σ(x) = 1/(1 + e−x) is the

sigmoid function and tanh(x) = (ex − e−x)/(ex + e−x) is the hyperbolic tangent

function.

Although LSTM mitigates the gradient vanishing/exploding problem, LSTM

does not completely solve the problem and can still suffer from it. More importantly,

as each recurrence step depends on the previous state of the RNN (the Ct−1 and st−1),

the computation has to be done recursively, which means the computation is not

parallelizable over the sequence dimension, as opposed to the Transformer model. As

a result, LSTMs have gradually been replaced by the Transformer model for training

very long sequences as in language modeling.

Linear Attention and State Space Models So far, we have introduced both

Transformer and RNN models. Transformer models demonstrate strong performance

and have therefore become widely adopted in deep learning. However, they suffer

from an O(n2) inference cost, where n is the sequence length, making them inefficient
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for long sequences. Additionally, they are fundamentally limited in handling infinite

context lengths. On the other hand, RNN models benefit from a more efficient O(n)

inference cost with a fixed memory size, but they are harder to train and generally

do not achieve the same level of performance as Transformers. This naturally raises

the question: Is there an alternative that combines the strengths of both models? In

this section, we introduce linear attention models, also known as deep state space

models, which show promise as an alternative by leveraging the advantages of both

approaches.

If we take a closer look at the SA layer in Transformer, we notice that the

reason why Transformer suffers a O(n2) inference cost is due to the Softmax function.

Because in Softmax, one needs to compute the normalization (or the partition

function) over all existing tokens, which makes the per-step inference linear to the

sequence length. A natural alternative is just removing the Softmax, which leads to

the linear attention (LA) (Katharopoulos et al., 2020):

LA(x) =
( 1√

d
M ⊙QK⊤)V. (2.11)

Importantly, as matrix multiplication is associative, if we temporarily ignore the causal

mask M , instead of precomputing QK⊤ ∈ Rn×n, one can compute K⊤V ∈ Rd×d. When

the causal mask M is taken into consideration, one can instead find the recursive form

of LA:

St = St−1 + ktv
⊤
t

yt = S⊤
t qt

(2.12)

Here, yt is the output of LA at time t, and St is the state (as in the RNN) at time t.

LA is a special linear recurrent network, where the recurrence is a simple addition.

Therefore, during training, one can use the parallel form in (2.11), and at inference,

one can apply the recurrent form (2.12).

State space models (SSMs) (Gu and Dao, 2023) have recently become a

promising alternative to Transformers as well. In its most general form, a state space
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model looks like:

St = ASt−1 + Bxt,

yt = CSt + Dxt,
(2.13)

where A,B,C,D are matrices that are potentially dependent on the input xt. LA

is a specific SSM as one can recover SA by setting A as the identity matrix, and

Bxt = ktv
⊤
t , and set C = qt and D = 0. When A is a constant matrix, the computation

of St reduces to a long convolution, because

St =
∑
s≤t

At−sBxs. (2.14)

Modern deep state space models make A,B,C depend on input xt for richer repre-

sentational power (Gu and Dao, 2023), and therefore convolution can no longer be

applied. However, one can still use the parallel prefix-scan algorithm (Blelloch, 1990)

to efficiently compute all yt in O(log n) parallel time complexity, i.e., the maximum

time spent on each computing device, (O(n) distributed time complexity, the time

across all distributed computing devices), with O(n) space.

We will provide a more detailed discussion on existing deep SSM/LA models

in Chapter 6.

Remark We provide the trade-offs among different sequence modeling architecture

in Table 2.1. Again, the reason why we want to look into a novel sequence modeling

architecture is that we want the model to eventually learn continually, which is not

directly feasible for Transformer-based models. While RNN models in principle can be

the potential underlying backbone for a continual learning agent, they are very hard

to train over very long sequences. Therefore, it is one goal of this thesis to study novel

sequence model architectures that can potentially learn to conduct online learning,

such that at inference (or test) time, the model can continually learn new knowledge,

without explicitly conducting backpropagation.
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Chapter 3: Conflict-averse Gradient Descent

The first part of the dissertation investigates how to effectively optimize complex

loss functions composed of multiple, potentially conflicting, sub-loss functions in deep

learning. In this chapter, we focus on multitask learning (MTL), which is a specific

application that involves optimizing a linear combination of sub-loss functions, each

corresponding to a different task. We first introduce the motivation behind multitask

learning and its optimization challenge in practice (Section 3.1). We then provide an

overview of related work and existing methods in this area (Section 3.3). After that,

we present our contribution, the CAGrad algorithm (Section 3.4) designed to address

the optimization challenges.

3.1 Motivation

Deep learning and deep reinforcement learning (RL) have demonstrated signifi-

cant potential in enabling systems to master complex tasks. However, the extensive

data requirements of current methods pose challenges in developing a wide range of

capabilities, especially when each task is learned from scratch. A promising strategy

to overcome these challenges is multi-task learning (MTL) (Caruana, 1997b), which

involves training a single model simultaneously on multiple tasks, aiming to uncover

common structures that enhance both efficiency and performance compared to solving

tasks independently (Hashimoto et al., 2016; Ruder, 2017; Zhang and Yang, 2021;

Vandenhende et al., 2021). In particular, by sharing parameters across tasks, MTL

methods can learn more efficiently with an overall smaller model size compared to

learning with separate models (Vandenhende et al., 2021; Yang et al., 2020; Misra

et al., 2016). Moreover, it has been shown that MTL can improve the quality of

the learned representations, thereby benefiting individual tasks (Swersky et al., 2013;

Zamir et al., 2018; Stein, 2020). For example, an early MTL result by Caruana (1997b)
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demonstrated that training a neural network to recognize doors could be improved by

simultaneously training it to recognize doorknobs.

However, in practice, multi-task learning can be a challenging optimization

problem. It is common in MTL to optimize a single scalar loss function composed

of a linear combination—often just an average—of the individual task losses. When

training a single neural network with this combined loss, prior work has identified

that different tasks exhibit varying learning speeds (Chen et al., 2018; Hessel et al.,

2018), which causes the model to focus on learning only a subset of tasks effectively

while the rest of the tasks are not learned well or are barely learned at all.

This occurs because gradients of different loss functions can differ significantly

in both norm and direction at each optimization step (Yu et al., 2020a). Consequently,

the gradient of the average task loss can be dominated by a few sub-losses, resulting

in solutions that primarily address those sub-losses while neglecting others.

To illustrate this, consider the following thought experiment: the loss landscape

in deep learning is highly non-convex (Li et al., 2018), often containing multiple

low-loss regions for each task, and we assume there exists a shared low-loss region for

all tasks. When optimizing the average loss using gradient descent, differences in the

norm and direction of the gradients for each task can lead to certain tasks dominating

the optimization process. Consequently, the model may converge to a low-loss region

for these dominant tasks, which might not correspond to a low-loss region for the

remaining tasks. But in multitask learning, the hope is to find a shared low-loss region

for all tasks.

Note that this thought experiment is inspired by empirical observations in

multitask learning and does not have a formal theoretical foundation. The exact

mechanisms underlying deep learning, even in single-task setting, remain poorly

understood. Nevertheless, this intuition suggests that achieving effective optimization

of the average loss requires mitigating the dominance of any single task loss during

the optimization trajectory.
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More concretely, we can focus on the local update of multitask learning. Assume

we update the model parameter θ in an iterative fashion (as in standard gradient

descent):

θt+1 ← θt − ϵdt.

Here, θt is the model’s parameter at time t, dt ∈ Rm is the update vector, and ϵ is

the step size. Then we can say that at least locally, a conflict among individual losses

happens if the update leads to an ascent in any of the task losses, which is called the

conflicting gradients phenomenon (Yu et al., 2020a). Formally, we define the following.

Definition 3.1.1 (Conflicting Gradients (CG)). At time t, assume we use the update

vector dt and update the model parameter via

θt+1 ← θt − ϵdt.

Then we say conflicting gradients happens if

∃i ∈ [k], ⟨∇ℓi(θt), dt⟩ < 0.

It is important to note that CG is common in stochastic optimization when

gi = ∇ℓi is replaced by a noisy gradient estimate. For instance, even if all gi are

identical, their stochastic versions ĝi = gi + ξi, where ξi are stochastic noise might

result in an average gradient ĝ0 that conflicts with a subset of {ĝi}. However, under

this case, these conflicts are not persistent as in expectation ĝ0 does not conflict with

ĝi. In contrast, CG becomes problematic when it consistently arises for one or more

losses. By mitigating CG locally, we can ensure that, throughout the optimization

trajectory, the individual losses are more balanced in their optimization progress

compared to cases where CG is left unaddressed.

To address CG, prior approaches either adaptively re-weight task losses using

predefined heuristics (Chen et al., 2018; Kendall et al., 2018) or compute update

vectors (Sener and Koltun, 2018; Yu et al., 2020a) that reduce conflicts with individ-

ual task gradients. However, these methods are often heuristic in nature and lack
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convergence guarantees. In this work, we propose Conflict-Averse Gradient Descent

(CAGrad), a method that mitigates CG while ensuring convergence to the minimum of

the average loss. CAGrad quantifies the degree of conflict at each step t and computes

an update vector dt that minimizes the conflict subject to the constraint that it stays

close to the average gradient, ensuring both conflict mitigation and convergence.

3.2 Notation

Throughout this work, we use k to denote the number of learning objectives

(or loss functions). Unless otherwise specified, we assume the model is a deep neural

network fθ, where θ ∈ Rm represents the model’s parameters as a concatenated

m-dimensional vector. In other words, θ corresponds to the flattened set of learnable

neural network weights, with m potentially reaching millions or even billions for

large-scale deep networks. We use ℓ(θ) to denote the loss function for training θ. In

multitask learning, we use ℓi(θ) to denote the i-th task loss function. We use [k]

to denote {1, 2, . . . , k}, the set of positive integers up to k. We use ℓ0(θ) to denote

the average loss across all tasks: ℓ0(θ) = 1
k

∑
i∈[k] ℓi(θ). In addition, we assume all

loss functions are continuous and differentiable, and use gi as the abbreviation for

the i-th task’s gradient ∇ℓi(θ). Similarly, g0 is ∇ℓ0(θ) = 1
k

∑
i∈[k] gi. We use ⟨a, b⟩

and a⊤b interchangeably as the inner-product between vectors a and b in Rm, i.e.,

⟨a, b⟩ =
∑m

j=1 ajbj.

3.3 Background

In this section, we introduce the problem definition of multitask learning as

optimizing the average task loss. Then we introduce two closely related prior works

on multitask learning that aim to mitigate the conflicting gradients problem.

In multitask learning (MTL) with neural networks, we are given k ≥ 2 different

tasks, and we aim to learn a single neural network fθ, where θ ∈ Rm is the set of

parameters in the neural network. Each task i is associated with a loss function ℓi(θ).
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The goal is to find an optimal θ∗ ∈ Rm that achieves low average loss:

θ∗ = arg min
θ∈Rm

{
ℓ0(θ) ≜

1

k

k∑
i=1

ℓi(θ)

}
. (3.1)

Unfortunately, directly optimizing (3.1) using gradient descent may significantly

compromise the optimization of individual losses in practice, leading to bad local

minima of ℓ0, solutions where a subset of losses are optimized while the rest are barely

optimized.

As discussed in the motivation section, this issue arises primarily from conflicting

gradients (CG). Here, we highlight two prior methods designed to mitigate gradient

conflicts that are highly relevant to our work: the Multiple Gradient Descent Algorithm

(MGDA) (Désidéri, 2012; Sener and Koltun, 2018) and Projecting Conflicting Gradients

(PCGrad) (Yu et al., 2020a).

Multiple Gradient Descent Algorithm (MGDA) The Multiple Gradient De-

scent Algorithm (MGDA) explicitly optimizes towards a Pareto-optimal point for

multiple objectives. It is known that a necessary condition for θ to be Pareto-optimal

is that we could find a convex combination of the task gradients at θ that results in

the 0 vector. Therefore, MGDA proposes to minimize the minimum possible convex

combination of task gradients:

min
1

2

∥∥∥∥∥
k∑

i=1

wigi

∥∥∥∥∥
2

, s.t.
k∑

i=1

wi = 1, and ∀i, wi ≥ 0. (3.2)

The dual objective of (3.2) is

max
∥d∥≤1

min
i
⟨d, gi⟩. (3.3)

To see the primal-dual relationship, denote gw =
∑

i wigi, where w ∈ W ≜ {w ∈
Rk :

∑
i wi = 1, wi ≥ 0, ∀i ∈ [k]}. Note that mini⟨gi, d⟩ = minw∈W⟨

∑
i wigi, d⟩. The

Lagrangian of Eq. (3.3) is

max
d

min
λ≥0,w∈W

⟨d, gw⟩ −
λ

2
(∥d∥2 − 1). (3.4)
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Since the problem is a convex program and Slater’s condition holds when c > 0 (On

the other hand, if c = 0, then it is easy to check that all the results hold trivially), the

strong duality holds and we can exchange the min and max:

min
λ≥0,w∈W

max
d
⟨d, gw⟩ −

λ

2
(∥d∥2 − 1). (3.5)

The optimal d∗ = gw/λ and the resulting primal objective is therefore

min
λ≥0,w∈W

λ(
1

2
∥gw∥2 + 1). (3.6)

Here, λ corresponds to the constraint ∥d∥ ≤ 1. If we fix λ to be any constant, then

we recover the dual objective in Eq. (3.2).

In principle, MGDA can converge to any point on the Pareto front, the set of

solutions where it is impossible to make uniform improvement on all tasks, without

explicit control (See Theorem 2 from Désidéri (2012)). This property also explains

MGDA’s behavior in practice: it often learns much slower than other methods. For

instance, if any loss objective enters a local optimum, the learning stops.

Projecting Conflicting Gradients (PCGrad) Identifying that a major challenge

for multi-task optimization is the conflicting gradient, Yu et al. (2020a) proposes

to project each task gradient to the normal plane of others before combining them

together to form the final update vector. In the following, we provide the full algorithm

of the Projecting Conflicting Gradients (PCGrad):
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Algorithm 1 Projecting Conflicting Gradient Update Rule

Input: model parameter vector θ and differentiable loss functions {ℓi}ki=1.
gi ← ∇θℓi(θ).
gPCi = gi, ∀i.
for task i ∈ [k] do
for j ̸= i ∈ [k] in random order do
if gPCi · gj < 0 then

gPCi = gPCi − gPC
i ·gj
∥gj∥2

gj.

end if
end for

end for
Return the new update vector d = gPC = 1

k

∑
i g

PC
i .

Different from MGDA, PCGrad does not have a clear optimization objective at

each step, which makes it hard to analyze PCGrad’s convergence guarantee in general.

In practice, the random ordering to do the projection is particularly important for

PCGrad to work well (Yu et al., 2020a), which suggests that the intuition of removing

the conflicting part of each gradient might not be always correct. For the convergence

analysis, Yu et al. established the convergence guarantee for PCGrad only under the

two-task learning setting. Moreover, PCGrad is only guaranteed to converge to the

Pareto set without explicit control over which point it will arrive at.

Theorem 3.3.1 (Convergence of PCGrad (Yu et al., 2020a)). Consider two-task

learning, assuming the loss functions ℓ1 and ℓ2 are convex and differentiable. Suppose

the gradient of ℓ0 = (ℓ1 + ℓ2)/2 is H-Lipschitz with H > 0. Then, the PCGrad update

rule with step size t ≤ 1/H will converge to a Pareto-stationary point.

3.4 The CAGrad Algorithm

This section introduces the Conflict-averse Gradient Descent (CAGrad) al-

gorithm that helps mitigate the Conflicting Gradients (CG) problem in multitask

learning. The main idea of CAGrad is to first quantify the conflict at each optimization
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Algorithm 2 Conflict-averse Gradient Descent (CAGrad) for Multi-task Learning

Input: Initial model parameter vector θ0, differentiable loss functions {ℓi}ki=1, a
constant c ∈ [0, 1) and learning rate ϵ ∈ R+.
repeat

At the t-th optimization step, define g0 = 1
k

∑k
i=1∇ℓi(θt−1) and ϕ = c2∥g0∥2.

Solve

min
w∈W

F (w) := g⊤wg0 +
√

ϕ∥gw∥, where gw =
k∑

i=1

wi∇ℓi(θt−1).

Update θt = θt−1 − ϵ
(
g0 + ϕ1/2

∥gw∥gw

)
.

until convergence

step. Then, we treat multitask optimization as a constrained optimization problem

that minimizes the per-step conflict as long as the average loss ℓ0 is minimized.

At a given time t with model parameters θt, assume we take the update dt (as

in θt+1 ← θt− ϵdt), then we define the local objective conflict R(θt, dt) as the minimum

decrement among all objectives:

R(θt, dt) = max
i∈[k]

{
1

ϵ
(ℓi(θt − ϵdt)− ℓi(θt))

}
≈ −min

i∈[k]
⟨gi,t, dt⟩, (3.7)

where gi,t is short for∇ℓi(θt), and we use the first-order Taylor approximation assuming

ϵ is small. If R(θt, dt) < 0, it means that all losses are decreased with the update

given a sufficiently small ϵ. On the contrary, if R(θt, dt)≫ 0, it means after the local

update using dt, at least one loss objective becomes dramatically worse. As a result,

R(θt, dt) serves as a measurement of conflict among objectives.

Primal Objective With the above definition of conflict, we propose to look for

an update dt that minimizes R(θt, dt) as long as ℓ0, the average loss that serves as a

surrogate for multitask learning, is minimized:

max
dt∈Θ

min
i∈[k]
⟨gi,t, dt⟩ s.t. ∥dt − g0,t∥ ≤ c∥g0,t∥, (3.8)

Here, c ∈ [0, 1) is a pre-specified hyper-parameter that controls the convergence rate.

We provide a visualization of the CAGrad’s solution compared to that of existing
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Figure 3.1: Visualization of the update of multitask gradient manipulation
algorithms.

methods in Figure 3.1.

Objective (3.8) seeks the optimal update vector within a local ℓ2 ball centered at

the averaged gradient g0,t, aiming to minimize the conflict between losses, as measured

by (3.7). It is important to note that g0,t can, in principle, be replaced by any other

vector if the user has non-uniform preferences across multiple objectives. In such cases,

the CAGrad algorithm remains applicable, naturally adapting to these preferences.

Dual Objective Temporarily ignoring the subscript on t, the optimization prob-

lem (3.8) involves decision variable d that has the same dimension as the number of

parameters in θ, which could be millions or even billions for a deep neural network.

Therefore, it is not practical to directly solve for d on every optimization step.

However, the dual problem of (3.8), as we will derive in the following, only involves

solving for a decision variable w ∈ Rk, which can be efficiently found using standard

optimization libraries (Diamond and Boyd, 2016).

Proposition 3.4.1 (Dual Objective of CAGrad). Let d∗ be the solution of

max
d∈Rm

min
i∈[K]

g⊤i d s.t. ∥g0 − d∥ ≤ c∥g0∥,

as in Eq. 3.8, where c ≥ 0, and g0, g1, . . . , gK ∈ Rm. Then we have

d∗ = g0 +
c∥g0∥
∥gw∗∥gw∗ ,
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where gw∗ =
∑

i w
∗
i gi and w∗ is the solution of

min
w≥Sk

g⊤wg0 + c∥g0∥∥gw∥, (3.9)

and Sk = {w ∈ RK :
∑

iwi = 1, wi ≥ 0,∀i ∈ [K]}. In addition,

min
i

g⊤i d
∗ = g⊤w∗g0 + c∥g0∥∥gw∗∥. (3.10)

Proof. Denote ϕ = c2∥g0∥2. Note that mini⟨gi, d⟩ = minw∈W⟨
∑

i wigi, d⟩. The La-

grangian of the objective in Eq. (3.8) is

max
d∈Rm

min
λ≥0,w∈W

g⊤wd−
λ

2
(∥g0 − d∥2 − ϕ).

Since the problem is a convex programming and the Slater’s condition holds when

c > 0 (On the other hand, if c = 0, then it is easy to check that all the results hold

trivially), the strong duality holds and we can exchange the min and max:

min
λ≥0,w∈W

max
d∈Rm

g⊤wd−
λ

2
∥g0 − d∥2 +

λϕ

2
.

With λ,w fixing, the optimal d is achieved when d = g0 + gw/λ, yielding the

following dual problem

min
w,λ≥0

g⊤w (g0 + gw/λ)− λ

2
∥gw/λ∥2 +

λ

2
ϕ.

This is equivalent to

min
w,λ≥0

g⊤wg0 +
1

2λ
∥gw∥2 +

λϕ

2
.

Optimizing out the λ we have

min
w∈W

g⊤wg0 +
√

ϕ∥gw∥, (3.11)

where the optimal λ = ∥gw∥/ϕ1/2. Eq. (3.10) is the consequence of strong duality.

As a result of the above, in practice, at each time step t, one can optimize

Eq. (3.11), which becomes the full CAGrad algorithm. We summarize it in Algorithm 2.
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When k, the number of tasks, is small, one can use any standard optimization library

(e.g., Scipy package) to find a numerical optimal solution.

Note that there exist a hyperparameter c in CAGrad. Setting c = 0 recovers

the original gradient descent for the average loss ℓ0. If we set c→∞, then it recovers

the Multiple Gradient Descent Algorithm (MGDA) (Désidéri, 2012). In the next

section, we will show that as long as c ∈ [0, 1), CAGrad is guaranteed to converge to

an optimum for ℓ0. In practice, it is safe to set c = 0.5.

Practical Speedup A typical drawback of methods that manipulate gradients

is the computation overhead. For computing the optimal update vector, a method

usually requires k back-propagations to find all individual gradients gi, in addition to

the time required for optimization. This can be prohibitive for the scenario with many

tasks. To this end, we propose to only sample a subset of tasks S ⊆ [k], compute their

corresponding gradients {gi | i ∈ S} and the averaged gradient g0. Then we optimize

d in:

max
d∈Rm

min

(
⟨kg0 −

∑
i∈S gi

k − |S| , d⟩, min
i∈S
⟨gi, d⟩

)
s.t. ∥d− g0∥ ≤ c∥g0∥ (3.12)

Note that the convergence guarantee in Thm. 3.5.2 still holds for Eq. 3.12 as the

constraint does not change. The time complexity is O((|S|N + T ), where N denotes

the time for one pass of back-propagation and T denotes the optimization time. For

few-task learning (k < 10), usually T ≪ N . When S = [k], we recover the full

CAGrad algorithm.

3.5 Theoretical Results

In this section, we provide the convergence analysis of the CAGrad algorithm.

We will first introduce the assumptions and then present the result.

Assumption 3.5.1. Assume individual loss functions ℓ0, ℓ1, . . . , ℓk are differentiable on

Rm and their gradients ∇ℓi(θ) are all H-Lipschitz, i.e. ∥∇ℓi(x)−∇ℓi(y)∥ ≤ H∥x− y∥

50



for i ∈ [k], where H ∈ (0,∞). Assume ℓ∗0 = infθ∈Rm ℓ0(θ) is lower bounded, i.e.,

ℓ∗0 > −∞.

Theorem 3.5.2 (Convergence of CAGrad). Assume Assumption 3.5.1 holds. With a

fixed step size ϵ satisfying 0 < ϵ ≤ 1/H, we have for the CAGrad in Alg. 2:

1) If 0 ≤ c < 1, then CAGrad converges to stationary points of ℓ0 in the sense

that
T∑
t=0

∥g0(θt)∥2 ≤
2(ℓ0(θ0)− ℓ∗0)

ϵ(1− c2)
.

2) For any c ≥ 0, all the fixed point of CAGrad are Pareto-stationary points of

(ℓ0, ℓ1, . . . , ℓk).

Proof. We will first prove 1). Consider the t-th optimization step and denote d∗(θt)

the update direction obtained by solving (3.8) at the t-th iteration. Then we have

ℓ0(θt+1)− ℓ0(θt) = ℓ0(θt − ϵd∗(θt))− ℓ0(θt)

≤ −ϵg0(θt)⊤d∗(θt) +
Hϵ2

2
∥d∗(θt)∥2

≤ −ϵg0(θt)⊤d∗(θt) +
ϵ

2
∥d∗(θt)∥2 //ϵ ≤ 1/H

≤ − ϵ

2

(
∥g0(θt∥2 + ∥d∗(θt)∥2 − ∥g0(θt)− d∗(θt)∥2

)
+

ϵ

2
∥d∗(θt)∥2

= − ϵ

2

(
∥g0(θt)∥2 − ∥d∗(θt)− g0(θt)∥2

)
≤ − ϵ

2
(1− c2)∥g0(θt)∥2 //by the constraint in (3.8)

Using telescoping sums, we have ℓ0(θT+1) − ℓ0(0) = −(ϵ/2)(1 − c2)
∑T

t=0 ∥g0(θt)∥
2.

Therefore

min
t≤T
∥g0(θt)∥2 ≤

1

T + 1

T∑
t=0

∥g0(θt)∥2 ≤
2(ℓ0(0)− ℓ0(θT+1))

ϵ(1− c2)(T + 1)
.

Therefore, if ℓ0 is lower bounded, that is, ℓ∗0 := infθ∈Rm ℓ0(θ) > −∞, then mint≤T ∥g0(θt)∥2 =

O(1/T ). For general c ≥ 0, in the fixed point, we have d∗(θ) = g0(θ) + λgw∗(θ) = 0,

which readily match the definition of Pareto Stationarity.
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In the following, we show that when c > 1, and we use a properly decaying step

size, the limit points of CAGrad are either stationary points of ℓ0, or Pareto-stationary

points of (ℓ1, . . . , ℓk).

Theorem 3.5.3. Under Assumption 3.5.1, assume c > 1 and we a time varying step

size satisfying

ϵt ≤
∥∥gw∗

t
(θt)
∥∥

H(c− 1)∥g0(θt)∥
,

where w∗
t is the solution of (3.9) at the t-th iteration, then we have

T∑
t=0

ϵt∥g0(θt)∥
∥∥gw∗

t
(θt)
∥∥ ≤ 2

mini(ℓi(θ0)− ℓi(θT+1))

(c− 1)
.

Therefore, if we have ℓ∗i = infθ∈Rm ℓi(θ) > −∞ and c > 1, then we have

ϵt∥g0(θt)∥
∥∥gw∗

t
(θt)
∥∥→ 0 as t→∞, meaning that we have either ϵt → 0, or ∥g0(θt)∥ →

0 or
∥∥gw∗

t
(θt)
∥∥→ 0. In this case, the actual behavior of the algorithm depends on the

specific choice of the step size. For example, if we take ϵt =

∥∥∥gw∗
t
(θt)

∥∥∥
H(c−1)∥g0(θt)∥ , then the

result becomes
T∑
t=0

∥∥gw∗
t
(θt)
∥∥2 ≤ 2Hmin

i
(ℓi(θ0)− ℓi(θT+1)).

which ensures
∥∥gw∗

t
(θt)
∥∥2 → 0.

Proof. For any task i ∈ [k],

ℓi(θt+1)− ℓi(θ) ≤ −ϵtgi(θt)⊤d∗(θt) +
Hϵ2t

2
∥d∗(θt)∥2

≤ −ϵt min
i

gi(θt)
⊤d∗(θt) +

Hϵ2t
2
∥d∗(θt)∥2

≤ −ϵt
(
gw∗

t
(θt)

⊤g0(θt) + c∥g0(θt)∥
∥∥gw∗

t
(θt)
∥∥)+

Hϵ2t
2
∥d∗(θt)∥2 //by (3.10)
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Meanwhile, note that

∥d∗(θt)∥2 =

∥∥∥∥∥g0(θt) +
c∥g0(θt)∥∥∥gw∗

t
(θt)
∥∥gw∗

t
(θt)

∥∥∥∥∥
2

= (c2 + 1)∥g0(θt)∥2 + 2
c∥g0(θt)∥∥∥gw∗

t
(θt)
∥∥g0(θt)⊤gw∗

t
(θt)

= 2c
∥g0(θt)∥∥∥gw∗

t
(θt)
∥∥ (gw∗

t
(θt)

⊤g0(θt) + c∥g0(θt)∥
∥∥gw∗

t
(θt)
∥∥)+ (1− c2)∥g0(θt)∥2.

Therefore,

ℓi(θt+1)− ℓi(θ)

≤ −ϵt
(

1−Hϵtc
∥g0(θt)∥∥∥gw∗

t
(θt)
∥∥
)(

gw∗
t
(θt)

⊤g0(θt) + c∥g0(θt)∥
∥∥gw∗

t
(θt)
∥∥)+

Hϵ2t
2

(c2 − 1)∥g0(θt)∥2

(∗)
≤ −ϵt

(
1−Hϵtc

∥g0(θt)∥∥∥gw∗
t
(θt)
∥∥
)

(c− 1)∥g0(θt)∥
∥∥gw∗

t
(θt)
∥∥− Hϵ2t

2
(c2 − 1)∥g0(θt)∥2

= −ϵt(c− 1)∥g0(θt)∥
∥∥gw∗

t
(θt)
∥∥+

Hϵ2t
2

(c− 1)2∥g0(θt)∥2

≤ −1

2
ϵt(c− 1)∥g0(θt)∥

∥∥gw∗
t
(θt)
∥∥ //assume ϵt ≤

∥∥gw∗
t
(θt)
∥∥

H(c− 1)∥g0(θt)∥
, c ≥ 1

where inequality (*) uses Cauchy-Schwarz inequality. Therefore, a telescoping sum

gives
T∑
t=0

ϵt∥g0(θt)∥
∥∥gw∗

t
(θt)
∥∥ ≤ 2

mini(ℓi(θ0)− ℓi(θT+1))

(c− 1)
.

Remark Based on the above analysis, we conclude that CAGrad converges to the

optimum of ℓ0 for values of c ∈ [0, 1). In the next section, we first verify this claim

and then demonstrate empirically that CAGrad also mitigates conflicting gradient

issues, resulting in enhanced multitask performance by achieving solutions closer to

the Pareto optimal set.
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Figure 3.2: The optimization challenges faced by gradient descent (GD) and
existing gradient manipulation methods like the multiple gradient descent algorithm
(MGDA) (Désidéri, 2012) and PCGrad (Yu et al., 2020a). MGDA, PCGrad and
CAGrad are applied on top of the Adam optimizer (Kingma and Ba, 2014). For
each methods, we repeat 3 runs of optimization from different initial points (labeled
with •). Each optimization trajectory is colored from red to yellow. GD with Adam
gets stuck on two of the initial points because the gradient of one task overshadows
that of the other task, causing the algorithm to jump back and forth between the
walls of a steep valley without making progress along the floor of the valley. MGDA
and PCGrad stop optimization as soon as they reach the Pareto set.

3.6 Empirical Results

We conduct experiments to answer the following questions:

Question (1) Do CAGrad, MGDA, and PCGrad behave consistently with their

theoretical properties in practice? (yes)

Question (2) Does CAGrad recover GD and MGDA when varying the constant c?

(yes)

Question (3) How does CAGrad perform in both performance and computational

efficiency compared to prior state-of-the-art methods on challenging multi-task learning

(MTL) problems under the supervised, semi-supervised, and reinforcement learning

settings? (CAGrad improves over prior state-of-the-art methods under all settings)

3.6.1 Convergence and Ablation over c

To answer questions (1) and (2), we create a toy optimization example to

evaluate the convergence of CAGrad compared to MGDA and PCGrad. On the

same toy example, we ablate over the constant c and show that CAGrad recovers
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Figure 3.3: The left four plots are 5 runs of each algorithms from 5 different
initial parameter vectors, where trajectories are colored from red to yellow. The
right two plots are CAGrad’s results with a varying c ∈ {0, 0.2, 0.5, 0.8, 10}.

GD and MGDA with proper c values. Next, to test CAGrad on more complicated

neural models, we perform the same set of experiments on the Multi-Fashion+MNIST

benchmark (Lin et al., 2019) with a shrunk LeNet architecture (LeCun et al., 1998) (in

which each layer has a reduced number of neurons compared to the original LeNet).

For the toy optimization example, we modify the toy example used by Yu et

al. (Yu et al., 2020a) and consider θ = (θ1, θ2) ∈ R2 with the following individual loss

functions:

ℓ1(θ) = c1(θ)f1(θ) + c2(θ)g1(θ) and ℓ2(θ) = c1(θ)f2(θ) + c2(θ)g2(θ), where

f1(θ) = log
(

max(|0.5(−θ1 − 7)− tanh (−θ2)|, 0.000005)
)

+ 6,

f2(θ) = log
(

max(|0.5(−θ1 + 3)− tanh (−θ2) + 2|, 0.000005)
)

+ 6,

g1(θ) =
(
(−θ1 + 7)2 + 0.1 ∗ (−θ2 − 8)2

)
/10− 20,

g2(θ) =
(
(−θ1 − 7)2 + 0.1 ∗ (−θ2 − 8)2)

/
10− 20,

c1(θ) = max(tanh (0.5 ∗ θ2), 0) and c2(θ) = max(tanh (−0.5 ∗ θ2), 0).

The average loss ℓ0 and individual losses ℓ1 and ℓ2 are shown in Figure 3.2. We then

pick 5 initial parameter vectors θinit ∈ {(−8.5, 7.5), (−8.5, 5), (0, 0), (9, 9), (10,−8)} and

plot the corresponding optimization trajectories with different methods in Figure 3.3.

Observation: As shown in Figure 3.3, GD gets stuck in 2 out of the 5 runs while

other methods all converge to the Pareto set. MGDA and PCGrad converge to

different Pareto-stationary points depending on θinit. CAGrad with c = 0 recovers GD
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and CAGrad with c = 10 approximates MGDA well (in theory it requires c→∞ to

exactly recover MGDA).

Next, we apply the same set of experiments on the multi-task classification

benchmark Multi-Fashion+MNIST (Lin et al., 2019). This benchmark consists of

images that are generated by overlaying an image from FashionMNIST dataset (Xiao

et al., 2017) on top of another image from MNIST dataset (Deng, 2012). The two

images are positioned on the top-left and bottom-right separately.

Experiment Details We follow the experiment setup from (Mahapatra and Rajan,

2020) and use the same shrunk LeNet that consists of the following layers as the

shared base network: Conv(1,5,9,1), MaxPool2d(2), ReLU, BatchNorm2d(5),

Conv2d(5,10,5,1), MaxPool2d(2), ReLU, BatchNorm1d(250), Linear(250,

50). Then a task-specific linear head Linear(50, 10) is attached to the shared base

for the MNIST and FashionMNIST prediction. We use the Adam optimizer (Kingma

and Ba, 2014) with a 0.001 learning rate and 0.01 weight decay and then train for 50

epochs with a batch size of 256. The training set consists of 120000 images of size

36x36 and the test set consists of 20000 images of the same size.

Observation: Due to the highly non-convex nature of the neural network, we are

not able to visualize the entire Pareto set. But we provide the final training losses

of different methods over three independent runs in Figure 3.4. As shown, CAGrad

achieves the lowest average loss with c = 0.2. In addition, PCGrad and MGDA

focus on optimizing Task 1 and Task 2 separately. Lastly, CAGrad with c = 0 and

c = 10 roughly recovers the final performance of GD and MGDA. By increasing c, the

model performance shifts from more GD-like to more MGDA-like, though due to the

non-convex nature of neural networks, CAGrad with 0 ≤ c < 1 does not necessarily

converge to the same point.
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Figure 3.4: The average and individual training losses on the Fashion-and-MNIST
benchmark by running GD, MGDA, PCGrad, and CAGrad with different c values.
GD gets stuck at the steep valley (the area with a cloud of dots), which other
methods can pass. MGDA and PCGrad converge randomly on the Pareto set.

3.6.2 Multi-task Supervised Learning

To answer question (3) in the supervised learning setting, we follow the

experiment setup from Yu et al. (Yu et al., 2020a) and consider the NYU-v2 and

CityScapes vision datasets. NYU-v2 contains 3 tasks: 13-class semantic segmentation,

depth estimation, and surface normal prediction. CityScapes similarly contains 2

tasks: 7-class semantic segmentation and depth estimation. Here, we follow Yu

et al. (2020a) and combine CAGrad with a state-of-the-art multitask neural network

MTAN (Liu et al., 2019b), which applies an attention mechanism on top of the SegNet

architecture (Badrinarayanan et al., 2017). We compare CAGrad with PCGrad, vanilla

MTAN, and Cross-Stitch (Misra et al., 2016), which is another MTL method that

modifies the network architecture. MTAN (Liu et al., 2019b) experimented with equal

loss weighting and two other dynamic loss weighting heuristics (Kendall et al., 2018;

Chen et al., 2018). For a fair comparison, all methods are applied under the equal

weighting scheme and we use the same training setup from (Chen et al., 2018). We

search c ∈ {0.1, 0.2, . . . 0.9} with the best average training loss for CAGrad on both

datasets (0.4 for NYU-v2 and 0.2 for Cityscapes). We perform a two-tailed, Student’s

t-test under equal sample sizes, unequal variance setup and mark the results that are

significant with an ∗. Following Maninis et al.(Maninis et al., 2019), we also compute

the average per-task performance drop of method m with respect to the single-tasking

baseline b: ∆m = 1
k

∑k
i=1(−1)li(Mm,i − Mb,i)/Mb,i where li = 1 if a higher value
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Segmentation Depth Surface Normal

#P. Method (Higher Better) (Lower Better)
Angle Distance
(Lower Better)

Within t◦

(Higher Better)
∆m% ↓

mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

3 Independent 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15

≈3 Cross-Stitch (Misra et al., 2016) 37.42 63.51 0.5487 0.2188 ∗28.85 ∗24.52 ∗22.75 ∗46.58 ∗59.56 6.96

1.77 MTAN (Liu et al., 2019b) 39.29 65.33 0.5493 0.2263 ∗28.15 ∗23.96 ∗22.09 ∗47.50 ∗61.08 5.59

1.77 MGDA (Sener and Koltun, 2018) ∗30.47 ∗59.90 ∗0.6070 ∗0.2555 24.88 19.45 29.18 56.88 69.36 1.38

1.77 PCGrad (Yu et al., 2020a) 38.06 64.64 0.5550 0.2325 ∗27.41 ∗22.80 ∗23.86 ∗49.83 ∗63.14 3.97

1.77 GradDrop (Chen et al., 2020) 39.39 65.12 0.5455 0.2279 ∗27.48 ∗22.96 ∗23.38 ∗49.44 ∗62.87 3.58

1.77 CAGrad (ours) 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 0.20

Table 3.1: Multi-task learning results on NYU-v2 dataset. #P denotes the relative
model size compared to the vanilla SegNet. Each experiment is repeated over 3
random seeds and the mean is reported. The best average result among all multi-
task methods is marked in bold. MGDA, PCGrad, GradDrop and CAGrad are
applied on the MTAN backbone. CAGrad has statistically significant improvement
over baselines methods with an ∗, tested with a p-value of 0.1.

Segmentation Depth

#P. Method (Higher Better) (Lower Better) ∆m% ↓
mIoU Pix Acc Abs Err Rel Err

2 Independent 74.01 93.16 0.0125 27.77

≈3 Cross-Stitch (Misra et al., 2016) ∗73.08 ∗92.79 ∗0.0165 ∗118.5 90.02

1.77 MTAN (Liu et al., 2019b) 75.18 93.49 ∗0.0155 ∗46.77 22.60

1.77 MGDA (Sener and Koltun, 2018) ∗68.84 ∗91.54 0.0309 33.50 44.14

1.77 PCGrad (Yu et al., 2020a) 75.13 93.48 0.0154 42.07 18.29

1.77 GradDrop (Chen et al., 2020) 75.27 93.53 ∗0.0157 ∗47.54 23.73

1.77 CAGrad (ours) 75.16 93.48 0.0141 37.60 11.64

Table 3.2: Multi-task learning results on CityScapes Challenge. Each experiment
is repeated over 3 random seeds and the mean is reported. The best average result
among all multi-task methods is marked in bold. PCGrad and CAGrad are applied
on the MTAN backbone. CAGrad has statistically significant improvement over
baselines methods with an ∗, tested with a p-value of 0.1.

is better for a criterion Mi on task i and 0 otherwise. The single-tasking baseline

(independent) refers to training individual tasks with a vanilla SegNet. Results are

shown in Table 4.1 and Table 3.2.

Observation: Given the single task performance, CAGrad performs better on the

task that is overlooked by other methods (Surface Normal in NYU-v2 and Depth in

CityScapes) and matches other methods’ performance on the rest of the tasks. We
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Figure 3.5: Test loss and training time comparison on NYU-v2 and Cityscapes.

also provide the final test losses and the per-epoch training time of each method in

Figure 3.5.

More Ablation Studies on NYU-v2 and CityScapes Datasets We conduct the

following additional studies on NYU-v2 and CityScapes datasets: 1) How do different

methods perform when we additionally apply the uncertain weight method (Kendall

et al., 2018)? 2) How do CAGrad perform with different values of c? 3) How does

PCGrad perform when we enlarge the learning rate? Specifically, we double the

learning rate to 2e-4. Results are provided in Table 3.3 and Table 3.4. We can see

that CAGrad performs consistently with different values of 0 < c < 1. PCGrad with a

larger learning rate will not perform better. Under the uncertain weights, MTAN and

PCGrad indeed perform better but CAGrad is still comparable or better than them.

3.6.3 Multi-task Reinforcement Learning

To answer question (3) in the reinforcement learning (RL) setting, we apply

CAGrad on the MT10 and MT50 benchmarks from the Meta-World environment (Yu

et al., 2020b). Following the Contextual Attention-based REpresentation learning

(CARE) work (Sodhani et al., 2021), we use Soft Actor-Critic (SAC) (Haarnoja et al.,

2018) as the underlying RL training algorithm. We compare against Multi-task SAC

(SAC with a shared model), Multi-headed SAC (SAC with a shared backbone and
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Segmentation Depth Surface Normal

#P. Method (Higher Better) (Lower Better)
Angle Distance
(Lower Better)

Within t◦

(Higher Better)
∆m% ↓

mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30

3 Independent 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15

≈3 Cross-Stitch (Misra et al., 2016) 37.42 63.51 0.5487 0.2188 28.85 24.52 22.75 46.58 59.56 6.96

1.77 MTAN (Liu et al., 2019b) 39.29 65.33 0.5493 0.2263 28.15 23.96 22.09 47.50 61.08 5.59

1.77 MGDA (Sener and Koltun, 2018) 30.47 59.90 0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 1.38

1.77 PCGrad (Yu et al., 2020a) (lr=1e-4) 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 3.97

1.77 PCGrad (Yu et al., 2020a) (lr=2e-4) 37.70 63.40 0.5871 0.2482 28.18 24.09 21.94 47.20 60.87 8.12

1.77 GradDrop (Chen et al., 2020) 39.39 65.12 0.5455 0.2279 27.48 22.96 23.38 49.44 62.87 3.58

1.77 CAGrad (c=0.2) 39.15 65.45 0.5563 0.2295 26.74 21.93 25.17 51.55 64.70 1.55

1.77 CAGrad (c=0.4) 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 0.20

1.77 CAGrad (c=0.6) 39.54 65.60 0.5340 0.2199 25.87 20.94 25.88 53.78 67.00 -1.36

1.77 CAGrad (c=0.8) 39.18 64.97 0.5379 0.2229 25.42 20.47 27.37 54.73 67.73 -2.29

1.77 MTAN (Liu et al., 2019b) (Uncert. Weights) 38.74 64.70 0.5360 0.2243 26.52 21.71 25.50 52.02 65.14 0.75

1.77 PCGrad (Yu et al., 2020a) (Uncert. Weights) 37.81 64.35 0.5318 0.2242 26.53 21.73 25.45 51.98 65.16 1.04

1.77 CAGrad (c=0.2) (Uncert. Weights) 38.87 65.19 0.5357 0.2227 26.38 21.64 25.66 52.21 65.39 0.319

1.77 CAGrad (c=0.4) (Uncert. Weights) 38.89 64.98 0.5313 0.2242 25.71 20.72 26.89 54.14 67.13 -1.59

1.77 CAGrad (c=0.6) (Uncert. Weights) 39.80 65.32 0.5334 0.2242 25.69 20.91 26.89 54.14 67.13 -1.59

1.77 CAGrad (c=0.8) (Uncert. Weights) 39.20 65.15 0.5322 0.2202 25.28 20.17 27.83 55.41 68.25 -3.14

Table 3.3: Multi-task learning results on NYU-v2 dataset. #P denotes the relative
model size compared to the vanilla SegNet. Each experiment is repeated over 3
random seeds and the mean is reported.

task-specific head), Multi-task SAC + Task Encoder (SAC with a shared model and

the input includes a task embedding) (Yu et al., 2020b) and PCGrad (Yu et al.,

2020a). We also compare with Soft Modularization (Yang et al., 2020) that routes

different modules in a shared model to form different policies. Lastly, we also include

a recent method (CARE) that considers language metadata and uses a mixture of

expert encoders for MTL. We follow the same experiment setup from CARE (Sodhani

et al., 2021).

Experiment Details The multi-task reinforcement learning experiments follow

the exact setup from CARE (Sodhani et al., 2021). Specifically, it is built on top of

the MTRL codebase (Sodhani and Zhang, 2021). We consider the MT10 and MT50

benchmarks from the MetaWorld environment (Yu et al., 2020b). A visualization of

the 50 tasks from MT50 is provided in Figure 3.6. The MT10 benchmark consists of a

subset of 10 tasks from the MT50 task pool. For all methods, we use Soft Actor Critic
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Segmentation Depth

#P. Method (Higher Better) (Lower Better) ∆m% ↓
mIoU Pix Acc Abs Err Rel Err

2 Independent 74.01 93.16 0.0125 27.77

≈3 Cross-Stitch (Misra et al., 2016) 73.08 92.79 0.0165 118.5 90.02

1.77 MTAN (Liu et al., 2019b) 75.18 93.49 0.0155 46.77 22.60

1.77 MGDA (Sener and Koltun, 2018) 68.84 91.54 0.0309 33.50 44.14

1.77 PCGrad (Yu et al., 2020a) 75.13 93.48 0.0154 42.07 18.29

1.77 GradDrop (Chen et al., 2020) 75.27 93.53 0.0157 47.54 23.73

1.77 CAGrad (c=0.2) 75.18 93.49 0.0140 40.12 13.69

1.77 CAGrad (c=0.4) 75.16 93.48 0.0141 37.60 11.64

1.77 CAGrad (c=0.6) 74.31 93.39 0.0151 34.84 11.46

1.77 CAGrad (c=0.8) 74.95 93.50 0.0143 36.05 10.74

1.77 MTAN (Liu et al., 2019b) (Uncert. Weights) 75.02 93.36 0.0139 35.56 9.48

1.77 PCGrad (Yu et al., 2020a) (Uncert. Weights) 74.68 93.36 0.0135 34.00 7.26

1.77 CAGrad (c=0.2) (Uncert. Weights) 75.05 93.45 0.0140 34.33 8.40

1.77 CAGrad (c=0.4) (Uncert. Weights) 74.90 93.46 0.0141 34.84 9.13

1.77 CAGrad (c=0.6) (Uncert. Weights) 74.89 93.45 0.0136 35.17 8.48

1.77 CAGrad (c=0.8) (Uncert. Weights) 75.38 93.48 0.0141 35.54 9.63

Table 3.4: Multi-task learning results on CityScapes Challenge. Each experiment
is repeated over 3 random seeds and the mean is reported.

(SAC) (Haarnoja et al., 2018) as the underlying reinforcement learning algorithm.

All methods are trained over 2 million steps with a batch size of 1280. Following

CARE (Sodhani and Zhang, 2021), we evaluate each method once every 10000 steps

and report the highest average test performance of a method over 10 random seeds over

the entire training stage. For CAGrad-Fast, we sub-sample 4 and 8 tasks randomly

at each optimization step as the S (i.e., the number of subsampled tasks in (3.12))

for the MT10 and MT50 experiments. For CAGrad, since MT10 and MT50 have 10

and 50 tasks, much more than the number of tasks in supervised MTL, so instead

of using standard optimization library to solve the CAGrad objective, we apply 20

gradient descent steps to approximately solve the objective. The gradient descent is

performed with a learning rate of 25 for MT10 and 50 for MT50, with a momentum of
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Figure 3.6: The 50 tasks in MT50 benchmark (Yu et al., 2020b).

0.5. We search the best c from {0.1, 0.5, 0.9} for MT10 and MT50 (c = 0.9 for MT10

and c = 0.5 for MT50).

Observation: The results are shown in Table 3.5. CAGrad outperforms all baselines

except for CARE which benefits from extra information from the metadata. We also

apply the practical speedup method by sub-sampling 4 and 8 tasks for MT10 and

MT50 (CAGrad-Fast). CAGrad-fast achieves comparable performance against the

state-of-the-art method while achieving a 2x (MT10) and 5x (MT50) speedup over

PCGrad.

We then compare the computation efficiency in Table 3.6.

In principle, PCGrad should have the same time complexity as CAGrad.

However, in practice, PCGrad projects the gradients following a random ordering of

the tasks in a sequential fashion (See Alg. 1), so it requires looping over all tasks

following that specific order, which makes it slow for a large number of tasks. Combined

with the results from Table 3.5, we see that CAGrad-Fast achieves comparable or

better results than PCGrad with a roughly 2x and 5x speedup on MT10 and MT50.
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Metaworld MT10 Metaworld MT50

Method success success
(mean ± stderr) (mean ± stderr)

Multi-task SAC (Yu et al., 2020b) 0.49 ±0.073 0.36 ±0.013
Multi-task SAC + Task Encoder (Yu et al., 2020b) 0.54 ±0.047 0.40 ±0.024
Multi-headed SAC (Yu et al., 2020b) 0.61 ±0.036 0.45 ±0.064
PCGrad (Yu et al., 2020a) 0.72 ±0.022 0.50 ±0.017
Soft Modularization (Yang et al., 2020) 0.73 ±0.043 0.50 ±0.035
CAGrad (ours) 0.83 ±0.045 0.52 ±0.023
CAGrad-Fast (ours) 0.82 ±0.039 0.50 ±0.016

CARE (Sodhani et al., 2021) 0.84 ±0.051 0.54 ±0.031
One SAC agent per task (upper bound) 0.90 ±0.032 0.74 ±0.041

Table 3.5: Multi-task reinforcement learning results on the Metaworld benchmarks.
Results are averaged over 10 independent runs and the best result is marked in
bold.

Method MT10 Time (sec) MT50 Time (sec)

PCGrad 9.7 59.8
CAGrad 10.3 27.8
CAGrad-Fast 4.8 11.4

Table 3.6: The training time per update step for PCGrad, CAGrad and CAGrad-
Fast on MT10/50.

3.6.4 Semi-Supervised Learning with Auxiliary Tasks

Besides supervised and reinforcement learning, we apply CAGrad to semi-

supervised learning with multiple auxiliary tasks. We view the problem as a multitask

learning problem.

Experiment Details All the methods are applied upon the original ARML

baseline, with the same configuration in Shi et al. (2020). Specifically, the batch size

is 256 and the optimizer is Adam. The learning rate is initialized to 0.005 in the first

160, 000 iterations and decays to 0.001 in the rest of iterations. The backbone network

is a WRN-28-2 model. To stabilize the training process, the features are extracted by a

moving-averaged model like in Tarvainen and Valpola (2017) with a moving-average

factor of 0.95. For PCGrad and MGDA, we use their official implementations without
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any change. For CAGrad (our method), we fix c = 0.1 in all the experiments. The

labeled images are randomly selected from the whole training set, and we repeat the

experiments 3 times on the same set of labeled images. We report the test accuracy

of the model with the highest validation accuracy.

Training Losses We analyze the training losses of different methods to demon-

strate the difference between these optimization methods. We report the losses, LCE,

L1
aux, and L2

aux, of the last epoch, when the number of labeled images is 2, 000. The

losses are listed in Table 3.7.

Observation: We have two key observations: (1) MGDA ignores the main task LCE,

yet it has the smallest loss on the second auxiliary task L2
aux. This implies MGDA

finds a sub-optimal solution on the Pareto front. (2) PCGrad and CAGrad can both

decrease the averaged loss L0 compared with the baseline ARML, however, CAGrad

yields a smaller L0 than PCGrad.

Method LCE L1
aux L2

aux L0

ARML (Shi et al., 2020) 0.0 ±0.0 0.0574 ±0.0036 -0.4946 ±0.0010 -0.4372 ±0.0046
ARML + PCGrad (Yu et al., 2020a) 0.0 ±0.0 0.0494 ±0.0088 -0.4943 ±0.0007 -0.4449 ±0.0095
ARML + MGDA (Sener and Koltun, 2018) 0.407 ±0.018 0.0453 ±0.0049 -0.4980 ±0.0007 -0.0463 ±0.0233
ARML + CAGrad (Ours) 0.0 ±0.0 0.0419 ±0.0034 -0.4926 ±0.0023 -0.4507 ±0.0058

Table 3.7: The Training Losses in the Last Epoch when the number of the labeled
images is 2, 000. Values that are smaller than 10−6 are replaced by 0. We report
the averaged losses over 3 independent runs for each method and mark the smallest
losses in bold.

3.7 Related Work

In this section, we provide a brief summary of three lines of related work. The

first is the field of multiobjective optimization, where the goal is to optimize a vector

of objectives simultaneously. Methods in this area often aim to find a single Pareto

optimal solution or a set of Pareto optimal solutions that approximate the Pareto
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front formed by these objectives. It is important to note that our primary focus is not

on advancing multiobjective optimization itself; rather, we concentrate on optimizing

a linear combination of different objectives. Specifically, we address the challenge of

conflicting gradients that arise when optimizing this linearly combined scalar loss. The

second line of related work involves methods that explicitly mitigate the conflicting

gradients (CG) problem in multitask learning (MTL). These methods often form a

new update dt at each step t from linearly combining all task gradients. Hence, these

methods are also referred to as the gradient manipulation methods. The third line of

related work involves other methods that address MTL from a different perspective

than optimization, which includes methods that form different task groupings and

methods that design new neural architectures for MTL.

Multiobjective Learning Multiobjective optimization, introduced by Vilfredo

Pareto in 1896 (Pareto, 1906), was initially developed in economics and political

science. Various approaches have since been proposed to address multiobjective

optimization challenges. No-preference methods minimize the distance between the

final objective vector and a reference vector formed from predefined lower bounds

for each objective (Fodor and Roubens, 1994; Miettinen, 1998). A priori methods

use linear scalarizing weights (Ishibuchi and Murata, 1998) to form a weighted scalar

objective that aligns with specified preferences. The ϵ-constrained method reformulates

the problem lexicographically, optimizing less-preferred objectives under constraints

that prioritize more-preferred ones (Miettinen, 1998). Other approaches focus on

identifying the entire Pareto front for user selection (Das and Dennis, 1998; Motta

et al., 2012; Messac et al., 2003; Messac and Mattson, 2004; Mueller-Gritschneder

et al., 2009; Erfani and Utyuzhnikov, 2011), while interactive methods iteratively

refine solutions with user input (Miettinen et al., 2008). More relevant to our work,

the multiple gradient descent algorithm (MGDA) (Désidéri, 2012; Sener and Koltun,

2018) proposes to directly optimize towards the Pareto front, and it turns out that the

MGDA algorithm can also mitigate the conflicting gradient issues. However, MGDA
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does not have control over which point on the Pareto front the algorithm arrives at.

In practice, MGDA can make extremely slow progress if any of the task loss has a

gradient with a small norm.

Gradient Manipulation Methods for Multitask Learning Gradient manip-

ulation methods are specifically designed to balance the losses of different tasks in

multitask learning by adjusting their gradients during optimization. These methods

aim to steer the optimization trajectory toward a more uniform decrease across all

task losses, mitigating the issue of conflicting gradients. By doing so, they help ensure

that progress in learning one task does not come at the expense of others, leading to

more balanced and effective multitask models.

The simplest form of gradient manipulation is to re-weight the objective losses

based on specific criteria, e.g., uncertainty (Kendall et al., 2018), gradient norm (Chen

et al., 2018), or difficulty (Guo et al., 2018). These methods are mostly heuristics

and their performance can be unstable. Recently, two methods (Sener and Koltun,

2018; Yu et al., 2020a) that manipulate the gradients to find a better local update

vector have become popular. Sener et al (Sener and Koltun, 2018) view MTL as a

multi-objective optimization problem, and use multiple gradient descent algorithm for

optimization. PCGrad (Yu et al., 2020a) identifies a major optimization challenge

for MTL, the conflicting gradients, and proposes to project each task gradient to

the normal plane of other task gradients before combining them to form the final

update vector. Though yielding good empirical performance, both methods can only

guarantee convergence to a Pareto-stationary point, but not knowing where it exactly

converges to. More recently, GradDrop (Chen et al., 2020) randomly drops out task

gradients based on how much they conflict. IMTL-G (Liu et al., 2020) seeks an update

vector that has equal projections on each task gradient. RotoGrad (Javaloy and Valera,

2021) separately scales and rotates task gradients to mitigate optimization conflict.
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Multitask Learning via Task Grouping or Architecture Design Task grouping

refers to grouping K tasks into n < k clusters and learning n models for each cluster.

The key is estimating the amount of positive knowledge transfer incurred by grouping

certain tasks together and then identifying which tasks should be grouped (Thrun

and O’Sullivan, 1996; Zamir et al., 2018; Standley et al., 2020; Shen et al., 2021; Fifty

et al., 2021). Novel neural architectures for multitask learning include hard-parameter-

sharing methods, which decompose a neural network into task-specific modules and a

shared feature extractor using manually designed heuristics (Kokkinos, 2017; Long

et al., 2017; Bragman et al., 2019), and soft-parameter-sharing methods, which learn

which parameters to share (Misra et al., 2016; Ruder et al., 2019; Gao et al., 2020; Liu

et al., 2019b). Recent studies extend neural architecture search for multitask learning

by learning where to branch a network to have task-specific modules (Guo et al., 2020;

Bruggemann et al., 2020).

3.8 Summary

In this chapter, we introduced the Conflict-Averse Gradient Descent (CAGrad)

algorithm, designed to mitigate the conflicting gradient issues while preserving con-

vergence to the average task loss in multitask learning. CAGrad generalizes both

standard gradient descent and multiple gradient descent algorithms, demonstrating

performance improvements across diverse multi-task learning problems compared to

state-of-the-art methods. By mitigating conflicting gradient (CG) issues, CAGrad

ensures more balanced update progress across all task losses and empirically leads to

models with better multitask performance. This result represents the effort to develop

an efficient optimization algorithm that addresses the conflicting gradient problem

(C1, Chapter 1.1).

While CAGrad effectively mitigates CG, it has two key limitations. First, its

computational cost grows significantly with k. Second, the theoretical link between

mitigating CG and finding better local minima of ℓ0 remains unclear. Exploring
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this connection is a promising direction for future research. In the next chapter, we

present a novel approach to tackling the CG challenge with computational efficiency

comparable to gradient descent on the average loss ℓ0.
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Chapter 4: Fast Adaptive Multitask Optimization

Although CAGrad helps mitigate the conflicting gradient (CG) problem in

multitask learning (MTL), at each time step t, it requires computing all task gradients,

which results in O(k) space and computation complexities. In this chapter, we

introduce a novel algorithm, named Fast Adaptive Multitask Optimization (FAMO),

that reduces the space and computation complexity to O(1). In the meantime, FAMO

demonstrates comparable or eve stronger performance than CAGrad across various

multitask benchmarks. In the following, we will first review MTL, the CG challenge

in MTL (Section 4.1). Then we will go through the details of some existing methods

for mitigating CG (Section 4.3). In the end, we will present the proposed algorithm,

Fast Adaptive Multitask Optimization (FAMO), that aims to mitigate CG while being

computationally efficient (Section 4.4).

4.1 Motivation

As mentioned in Section 3.1, multitask learning (MTL) aims to train a single

model across multiple tasks with the hope to leverage the shared structures among tasks

for more efficient learning than training separate models for individual tasks (Caruana,

1997b). In practice, this is often achieved via optimizing a scalar loss that is a linear

combination of all task losses (often just the average loss). However, it is observed

empirically that optimizing the average loss across all tasks can lead to bad local

minima, where only a small subset of tasks are optimized while the rest of tasks can be

barely optimized at all. Yu et al. (2020a) propose that one major reason behind such

optimization failure is the conflicting gradients phenomenon, where the per-step local

update (e.g., the gradient of the average loss) has a negative correlation of certain

task gradients consistently. Therefore, throughout the optimization trajectory, these

tasks are severely overlooked and hence barely optimized.
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To mitigate this problem, gradient manipulation methods propose to dynami-

cally combine task gradients linearly at each optimization step, to mitigate the CG

problem (Yu et al., 2020a; Liu et al., 2020; Chen et al., 2020; Liu et al., 2021) (including

CAGrad from Chapter 3). In particular, these methods compute a new update vector

in place of the gradient to the average loss, such that all task losses decrease in a more

balanced way. The new update vector is often determined by solving an additional

optimization problem that involves all task gradients. While these approaches exhibit

improved multitask performance (e.g., lower average loss), it is pointed out that these

methods become computationally expensive when the number of tasks and the model

size are large (Xin et al., 2022). This is because they require computing and storing all

task gradients at each iteration, thus demanding O(k) space and time complexities (See

CAGrad Algorithm 2 from Section 3.4 as an example), not to mention the overhead

introduced by solving the additional optimization problem. In contrast, the average

gradient can be efficiently computed in O(1) space and time per iteration because one

can first average the task losses and then take the gradient of the average loss. To

this end, we ask the following question:

(Q) Is it possible to design a multi-task learning optimizer that ensures a balanced

reduction in losses across all tasks while utilizing O(1) space and time per iteration?

In this work, we present Fast Adaptive Multitask Optimization (FAMO), a

simple yet effective gradient manipulation methods to address the above question. On

one hand, FAMO is designed to ensure that all tasks are optimized with approximately

similar pace, therefore mitigating the CG problem. On the other hand, FAMO

leverages the loss history to update the task weighting, bypassing the necessity of

computing all task gradients.

4.2 Notation

Throughout this work, we use k to denote the number of learning objectives

(or loss functions). Unless otherwise specified, we assume the model is a deep neural
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Figure 4.1: Top left: The loss landscape, and individual task losses of a toy
2-task learning problem (⋆ represents the minimum of task losses). Top right: the
runtime of different MTL methods for 50000 steps. Bottom: the loss trajectories
of different MTL methods. Adam fails in 1 out of 5 runs to reach the Pareto front
due to CG. FAMO decreases task losses in a balanced way and is the only method
matching the O(1) space/time complexity of Adam. Experimental details and
analysis are provided in Section 4.7.1.

network fθ, where θ ∈ Rm represents the model’s parameters as a concatenated

m-dimensional vector. In other words, θ corresponds to the flattened set of learnable

neural network weights, with m potentially reaching millions or even billions for

large-scale deep networks. We use ℓ(θ) to denote the loss function for training θ. In

multitask learning, we use ℓi(θ) to denote the i-th task loss function. We use [k]

to denote {1, 2, . . . , k}, the set of positive integers up to k. We use ℓ0(θ) to denote

the average loss across all tasks: ℓ0(θ) = 1
k

∑
i∈[k] ℓi(θ). In addition, we assume all

loss functions are continuous and differentiable, and use gi as the abbreviation for

the i-th task’s gradient ∇ℓi(θ). Similarly, g0 is ∇ℓ0(θ) = 1
k

∑
i∈[k] gi. We use ⟨a, b⟩

and a⊤b interchangeably as the inner-product between vectors a and b in Rm, i.e.,

⟨a, b⟩ =
∑m

j=1 ajbj.
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4.3 Background

This section provides an overview of some of the existing gradient manipulation

methods in details.

Gradient Manipulation Methods Gradient manipulation methods aim to de-

crease all task losses in a more balanced way in MTL by finding a new update dt at

each step. dt is usually a convex combination of task gradients (denote ∇ℓi,t = ∇θℓi(θt)

for short):

dt =

∇ℓ
⊤
1,t

...
∇ℓ⊤k,t


⊤

wt, where wt =

w1,t
...

wk,t

 = f
(
∇ℓ1,t, . . . ,∇ℓk,t

)
∈ Sk. (4.1)

Here, Sk = {w ∈ Rk
≥0 | w⊤1 = 1} is the probabilistic simplex, and wt is the

task weighting across all tasks. In the following, we provide the details of five

contemporary gradient manipulation methods (MGDA (Sener and Koltun, 2018),

PCGrad (Yu et al., 2020a), CAGrad (Liu et al., 2021), IMTL-G (Liu et al., 2020),

NashMTL (Navon et al., 2022)) and their corresponding f . Note that existing

gradient manipulation methods require computing and storing k task gradients before

applying f to compute dt, which often involves solving an additional optimization

problem. As a result, we say these methods require at least O(k) space and time

complexity, which makes them slow and memory inefficient when k and model size m

are large.

4.3.1 Existing Gradient Manipulation Methods

In this section, we provide a brief overview of representative gradient manipu-

lation methods in MTL, and discuss the connections among these methods.

Multiple Gradient Descent Algorithm (MGDA) (Désidéri, 2012; Sener and

Koltun, 2018) The MGDA algorithm is one of the earliest gradient manipulation
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methods for multitask learning. In MGDA, the per-step update dt is found by solving

dt = arg max
d∈Rm

min
i∈[k]
∇ℓ⊤i,td−

1

2
∥d∥2.

As a result, the solution d∗ of MGDA optimizes the worst improvement across all

tasks or equivalently seeks an equal descent across all task losses as much as possible.

But in practice, MGDA suffers from slow convergence since the update d∗ can be

very small. For instance, if one task has a small loss scale, the progress of all other

tasks will be bounded by the progress in this task.

Projecting Gradient Descent (PCGrad) (Yu et al., 2020a) PCGrad initial-

izes viPC = ∇ℓi,t, then for each task i, PCGrad loops over all task j ̸= i (in a random

order, which is crucial as mentioned in (Yu et al., 2020a)) and removes the “conflict”

viPC ← viPC −
viPC

⊤∇ℓj,t
∥ℓj,t∥2

∇ℓj,t if viPC
⊤∇ℓj,t < 0.

In the end, PCGrad produces dt = 1
k

∑k
i=1 v

i
PC. Due to the construction, PCGrad

will also help improve the worst improvement across all tasks since the conflict

between the update and each task gradient is iteratively removed. However, due to the

stochastic iterative procedural of this algorithm, it is hard to understand PCGrad

from a first principle approach.

Conflict-averse Gradient Descent (CAGrad) (Liu et al., 2021) dt is found

by solving

dt = arg max
d∈Rm

min
i∈[k]
∇ℓ⊤i,td s.t. ∥d−∇ℓ0,t∥ ≤ c∥∇ℓ0,t∥.

The details of the CAGrad algorithm can be found in Chapter 3. In a brief summary,

CAGrad seeks an update dt that maximizes the worst improvement, while staying

close to the average gradient ∇ℓ0.
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Impartial Multi-Task Learning (IMTL-G) (Liu et al., 2020) IMTL-G finds

dt such that it shares the same cosine similarity with any task gradients:

∀i ̸= j, d⊤t
∇ℓi,t
∥∇ℓi,t∥

= d⊤t
∇ℓj,t
∥∇ℓj,t∥

, and dt =
k∑

i=1

wi,t∇ℓi,t, for some wt ∈ Sk.

The constraint that dt =
∑k

i=1wi,t∇ℓi,t is for preventing the problem from being

under-determined. From the above equation, we can see that IMTL-G ignores the

“size” of each task gradient and only cares about the “direction”. As a result, one can

think of IMTL-G as a variant of MGDA that applies to the normalized

gradients. By doing so, IMTL-G does not suffer from the straggler effect due to

slow loss. Furthermore, one can view IMTL-G as the equal angle descent, which

is also proposed in Katrutsa et al. (Katrutsa et al., 2020), where the objective is to

find d such that

∀i ̸= j, cos(d,∇ℓi,t) = cos(d,∇ℓj,t).

NashMTL(Navon et al., 2022) NashMTL finds dt by solving a bargaining game

treating the local improvement of each task loss as the utility for each task:

dt = arg max
d∈Rm,∥d∥≤1

k∑
i=1

log
(
∇ℓ⊤i,td

)
.

Note that the objective of NashMTL implicitly assumes that there exists d such that

∀ i, ∇ℓ⊤i,td > 0 (otherwise we reach the Pareto front). It is easy to see that

max
∥d∥≤1

k∑
i=1

log
(
∇ℓ⊤i,td

)
= max

∥d∥≤1

k∑
i=1

log⟨ ∇ℓi,t∥∇ℓi,t∥
, d⟩ = max

∥d∥≤1

k∑
i=1

log cos
(
∇ℓi,t, d

)
.

Therefore, due to the log, NashMTL also ignores the “size” of task gradients and

only cares about their “directions”. Moreover, denote ui =
∇ℓi,t

∥∇ℓi,t∥ . Then, according to

the KKT condition, we know:∑
i

ui

u⊤
i d
− αd = 0, α ≥ 0 =⇒ d =

1

α

∑
i

1

u⊤
i d

ui.
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Consider when k = 2, if we take the equal angle descent direction: d∠ = (u1 + u2)/2

(note that as u1 and u2 are normalized, their bisector is just their average). Then it is

easy to check that

d∠ =
1

α

(
2

u⊤
1 (u1 + u2)

u1 +
2

u⊤
2 (u1 + u2)

u2

)
, where α =

u⊤
1 (u1 + u2)

4
=

u⊤
2 (u1 + u2)

4
.

As a result, we can see that when k = 2, NashMTL is equivalent to IMTL-G

(or the equal angle descent). However, this is not generally true when k > 2.

Remark Note that all of the above gradient manipulation methods require

computing and storing k task gradients before computing dt, which often involves solv-

ing an additional optimization problem. Hence, these methods can be computationally

expensive for large k and large model sizes.

4.4 The FAMO Algorithm

In this section, we introduce FAMO that addresses question (Q), which involves

two main ideas:

1. At each step, decrease all task losses at an equal pace as much as possible

(Section 4.4.1).

2. Amortize the computation in 1. over time (Section 4.4.2), so that there is no

need to explicitly compute task gradients.

4.4.1 Balanced Rate of Loss Improvement

At time t, assume we perform the update θt+1 = θt − αdt. We define the rate

of improvement for task i as

ri(α, dt) =
ℓi,t − ℓi,t+1

ℓi,t
.1 (4.2)

1To avoid division by zero, in practice we add a small constant (e.g., 1e− 8) to all losses. For ease
of notation (e.g., ℓi(·)← ℓi(·) + 1e− 8, we omit it throughout the paper.
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Algorithm 3 Fast Adaptive Multitask Optimization (FAMO)

1: Input: Initial parameter θ0, task losses {ℓi}ki=1 (ensure that ℓi ≥ ϵ > 0, for
instance, by ℓi ← ℓi − ℓ∗i + ϵ, ℓ∗i = infθ ℓi(θ)), learning rate ϵ and β, and decay γ
(= 0.001 by default).

2: ξ1 ← 0. // initialize the task logits to all zeros
3: for t = 1 : T do
4: Compute zt = Softmax(ξt), e.g.,

zi,t =
exp(ξi,t)∑k
i=1 exp(ξi,t)

.

5: Update the model parameters:

θt+1 = θt − ϵ
k∑

i=1

(
ct
zi,t
ℓi,t

)
∇ℓi,t, where ct =

( k∑
i=1

zi,t
ℓi,t

)−1
.

6: Update the logits for task weighting:

ξt+1 = ξt − β
(
δt + γξt

)
where δt =

∇
⊤z1,t(ξt)

...
∇⊤zk,t(ξt)


⊤  log ℓ1,t − log ℓ1,t+1

...
log ℓk,t − log ℓk,t+1.

 .

7: end for

FAMO then seeks an update dt that results in the largest worst-case improvement

rate across all tasks (1
2
∥dt∥ is subtracted to prevent an under-specified optimization

problem where dt can be arbitrarily large):

max
dt∈Rm

min
i∈[k]

1

α
ri(α, dt)−

1

2
∥dt∥2. (4.3)

When the step size α is small, using Taylor approximation, the problem (4.3) can be

approximated by

max
dt∈Rm

min
i∈[K]

∇ℓ⊤i,tdt
ℓi,t

− 1

2
∥dt∥2 =

(
∇ log ℓi,t

)⊤
dt −

1

2
∥dt∥2. (4.4)

Instead of solving the primal problem in (4.4) where d ∈ Rm (m can be millions if θ is

the parameter of a neural network), we consider its dual problem:
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Proposition 4.4.1. The dual objective of (4.4) is

z∗t ∈ arg min
z∈Sk

1

2
∥Jtz∥2, where Jt =

∇ log ℓ⊤1,t
...

∇ log ℓ⊤k,t

 , (4.5)

where z∗t = [z∗t,i] is the optimal combination weights of the gradients, and the optimal

update direction is d∗t = Jtz
∗
t .

Proof.

max
d∈Rm

min
i∈[k]

(
∇ log ℓi,t

)⊤
d− 1

2
∥d∥2

= max
d∈Rm

min
z∈Sk

( k∑
i=1

zi∇ log ℓi,t
)⊤

d− 1

2
∥d∥2

= min
z∈Sk

max
d∈Rm

( k∑
i=1

zi∇ log ℓi,t
)⊤

d− 1

2
∥d∥2 (strong duality)

(4.6)

Write g(d, z) =
(∑k

i=1 zi∇ log ℓi,t
)⊤

d− 1
2
∥d∥2, then by setting

∂g

∂d
= 0 =⇒ d∗ =

k∑
i=1

zi∇ log ℓi,t.

Plugging in d∗ back, we have

max
d∈Rm

min
i∈[k]

(
∇ log ℓi,t

)⊤
d− 1

2
∥d∥2 = min

z∈Sk

1

2

∥∥∥∥∥
k∑

i=1

zi∇ log ℓi,t

∥∥∥∥∥
2

= min
z∈Sk

1

2
∥Jtz∥2.

At the optimum, we have d∗t = Jtz
∗
t .

The dual problem in (4.5) can be viewed as optimizing the log loss functions of

the multiple gradient descent algorithm (MGDA) (Désidéri, 2012; Sener and Koltun,

2018). Similar to MGDA, (4.5) only involves a decision variable of dimension k ≪ m.

Furthermore, if the optimal combination weights z∗t is an interior point of Sk, then the

improvement rates ri(α, d
∗
t ) of the different tasks i equal, as we show in the following

result.
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Proposition 4.4.2. Assume {ℓi}ki=1 are smooth and the optimal weights z∗t in (4.5)

is an interior point of Sk, then

∀ i ̸= j ∈ [k], r∗i (d∗t ) = r∗j (d∗t ),

where r∗i (d∗t ) = limα→0
1
α
ri(α, d

∗
t ).

Proof. Consider the Lagrangian form of (4.5)

L(z, λ, µ) =
1

2

∥∥∥∥∥
k∑

i=1

zi∇ log ℓi,t

∥∥∥∥∥
2

+ λ
( k∑

i=1

zi − 1
)
−

k∑
i=1

µizi, where ∀i, µi ≥ 0. (4.7)

When z∗ reaches the optimum, we have ∂L(z, λ, µ)/∂z = 0, recall that d∗t = Jtz
∗
t , then

J⊤
t Jtz

∗ = −µ− λ, where Jt =

∇ log ℓ⊤1,t
...

∇ log ℓ⊤k,t

 =⇒ J⊤
t d

∗
t = −(µ + λ).

When z∗t is an interior point of Sk, we know that µ = 0. Hence J⊤
t d

∗
t = −λ. This

means,

∀i ̸= j, lim
α→0

1

α
ri(α, d

∗
t ) = ∇ log ℓ⊤i,td

∗
t = ∇ log ℓ⊤j,td

∗
t = lim

α→0

1

α
rj(α, d

∗
t ).

4.4.2 Fast Approximation by Amortizing over Time

Instead of fully solving (4.5) at each optimization step, FAMO performs a single-

step gradient descent on z, which amortizes the computation over the optimization

trajectory:

zt+1 = zt − αz δ̃, where δ̃ = ∇z
1

2

∥∥∥∥∥
k∑

i=1

zi,t∇ log ℓi,t

∥∥∥∥∥
2

= J⊤
t Jtzt. (4.8)

But then, note that

1

α

log ℓ1,t − log ℓ1,t+1
...

log ℓk,t − log ℓk,t+1

 ≈ J⊤
t dt = J⊤

t Jtzt, (4.9)
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so we can use the change in log losses to approximate the gradient.

In practice, to ensure that z always stays in Sk, we re-parameterize z by ξ

and let zt = Softmax(ξt), where ξt ∈ RK are the unconstrained softmax logits.

Consequently, we have the following approximate update on ξ from (4.8):

ξt+1 = ξt − βδ, where δ =

∇
⊤z1,t(ξ)

...
∇⊤zk,t(ξ)


⊤ log ℓ1,t − log ℓ1,t+1

...
log ℓk,t − log ℓk,t+1

 . (4.10)

4.4.3 Practical Implementation

To facilitate practical implementation, we present two modifications to the

update in (4.10).

Re-normalization The suggested update above is a convex combination of the

gradients of the log loss, e.g.,

d∗ =
k∑

i=1

zi,t∇ log ℓi,t =
k∑

i=1

(zi,t
ℓi,t

)
∇ℓi,t.

When ℓi,t is small, the multiplicative coefficient
zi,t
ℓi,t

can be quite large and result in

unstable optimization. Therefore, we propose to multiply d∗ by a constant ct, such

that ctd
∗ can be written as a convex combination of the task gradients just as in

other gradient manipulation algorithms (see (4.1) and we provide the corresponding

definition of w in the following):

ct =
( k∑

i=1

zi,t
ℓi,t

)−1
and dt = ctd

∗ =
k∑

i=1

wi∇ℓi,t, where wi = ct
zi,t
ℓi,t

. (4.11)

Regularization As we are amortizing the computation over time and the loss

function {ℓi(·)}s are changing dynamically, it makes sense to focus more on the recent

updates of ξ (Zhou et al., 2022). To this end, we put a decay term on w such that the
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resulting ξt is an exponential moving average of its gradient updates:

ξt+1 = ξt − β(δt + γξt) = −β
(
δt + (1− βγ)δt−1 + (1− βγ)2δt−2 + . . .

)
. (4.12)

We provide the complete FAMO algorithm in Algorithm 3. We provide the

pseudocode for FAMO in Algorithm 4. To use FAMO, one just first computes the

task losses, calls get weighted loss() to get the weighted loss, and does the normal

backpropagation through the weighted loss. After that, one can call update() to

update the task weighting.
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Algorithm 4 Implementation of FAMO in PyTorch-like Pseudocode
class FAMO:

def init (self, num tasks, min losses, α=0.025, γ=0.001):
# min losses (num tasks,) the loss lower bound for each

task.

self.min losses = min losses

self.xi = torch.tensor([0.0] * num tasks,

requires grad=True)

self.xi opt = torch.optim.Adam([self.xi], lr=α,
weight decay=γ)

def get weighted loss(self, losses):

# losses (num tasks,)

z = F.softmax(self.xi, -1)

D = losses - self.min losses + 1e-8

c = 1 / (z / D).sum().detach()

loss = (c * D.log() * z).sum()

return loss

def update(self, prev losses, curr losses):

# prev losses (num tasks,)

# curr losses (num tasks,)

delta = (prev losses - self.min losses + 1e-8).log() -

(curr losses - self.min losses + 1e-8).log()

with torch.enable grad():

d = torch.autograd.grad(F.softmax(self.xi, -1),

self.xi,

grad outputs=delta.detach())[0]

self.xi opt.zero grad()

self.xi.grad = d

self.xi opt.step

4.5 The Continuous Limit of FAMO

One way to characterize FAMO’s behavior is to understand the stationary

points of the continuous-time limit of FAMO (i.e. when step sizes (α, β) shrink to

zero). From Algorithm 3, one can derive the following non-autonomous dynamical
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system (assuming {ℓi} are all smooth):

[
θ̇

ξ̇

]
= −ct

[
Jtzt

AtJ
⊤
t Jtzt + γ

ct
ξt

]
, where At =

∇
⊤z1,t(ξt)

...
∇⊤zk,t(ξt)

 . (4.13)

(4.13) reaches its stationary points (or fixed points) when (note that ct > 0)[
θ̇

ξ̇

]
= 0 =⇒ Jtzt = 0 and ξt = 0 =⇒

k∑
i=1

∇ log ℓi,t = 0. (4.14)

Therefore, the minimum points of
∑k

i=1 log ℓi(θ) are all stationary points of (4.13).

4.6 Amortizing Other Gradient Manipulation Methods

Although FAMO uses an iterative update on w, it is not immediately clear

whether we can apply the same amortization easily on other existing gradient ma-

nipulation methods. In this section, we discuss such possibilities and point out the

challenges. We use ⊘ to denote elementwise division.

Amortizing MGDA This is almost the same as in FAMO, except that

MGDA acts on the original task losses while FAMO acts on the log of task losses.

Amortizing PCGrad For PCGrad, finding the final update vector requires

iteratively projecting one task gradient to the other, so there is no straightforward

way of bypassing the computation of task gradients.

Amortizing IMTL-G The task weighting in IMTL-G is computed by a

series of matrix-matrix and matrix-vector products using task gradients (Liu et al.,

2020). Hence, it is also hard to amortize its computation over time.

Therefore, we focus on deriving the amortization for CAGrad and NashMTL.

Amortizing CAGrad For CAGrad, the dual formulation of the inner

optimization that finds dt is

min
w∈Sk

F (w) = g⊤wg0 + c∥gw∥∥g0∥, (4.15)
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where g0 = ∇ℓ0,t and gw =
∑k

i=1 wi∇ℓi. Denote

G =

∇ℓ
⊤
1,t

...
∇ℓ⊤k,t

 .

Now, if we take the gradient with respect to w in (4.15), we have:

∂F

∂w
= G⊤g0 + c

∥g0∥
∥gw∥

G⊤gw. (4.16)

As a result, to approximate this gradient, one can separately estimate:

G⊤g0 ≈
ℓ(θ)− ℓ(θ − αg0)

α

G⊤gw ≈
ℓ(θ)− ℓ(θ − αgw)

α

∥g0∥ ≈
√

1⊤G⊤g0

∥gw∥ ≈
√
w⊤G⊤gw

. (4.17)

Once all these are estimated, one can combine them together to perform a single

update on w. But note that this will require 3 forward and backward passes through

the model, making it harder to implement in practice than FAMO.

Amortizing NashMTL According to the derivation from NashMTL (Navon

et al., 2022), the objective is to solve for w:

G⊤Gw = 1⊘ w. (4.18)

One can therefore form an objective:

min
w

F (w) =
∥∥G⊤Gw − 1⊘ w

∥∥2
2
. (4.19)

Taking the derivative of F with respect to w, we have

∂F

∂w
= 2G⊤G

(
G⊤gw − 1⊘ w

)
+ 2

(
G⊤gw − 1⊘ w

)
⊘ (w ⊙ w). (4.20)

Therefore, to approximate the gradient of w, one needs to first estimate

G⊤gw ≈
L(θ)− L(θ − αgw)

α
= η. (4.21)
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Then we estimate

G⊤G(η − 1⊘ w) ≈ L(θ)− L(θ − αG(η − 1⊘ w))

α
. (4.22)

Again, this results in 3 forward and backward passes through the model, let alone the

overhead of resetting the model back to θ (requires a copy of the original weights).

In short, though it is possible to derive a fast approximation algorithm to

approximate the gradient update on w for some of the existing gradient manipulation

methods, it often involves much more complicated computation compared to that of

FAMO.

4.7 Empirical Results

We conduct experiments to answer the following question:

How does FAMO perform in terms of space/time complexities and standard

MTL metrics against prior MTL optimizers on standard benchmarks (e.g., supervised

and reinforcement MTL problems)?

In the following, we first use a toy 2-task problem to demonstrate how FAMO

mitigates CG while being efficient. Then we show that FAMO performs comparably or

even better than state-of-the-art gradient manipulation methods on standard multitask

supervised and reinforcement learning benchmarks. In addition, FAMO requires

significantly lower computation time when K is large compared to other methods.

Lastly, we conduct an ablation study on how robust FAMO is to γ. Each section first

details the experimental setup and then analyzes the results.

4.7.1 A Toy 2-Task Example

To understand the optimization trajectory of FAMO, we adopt the same 2D

multitask optimization problem from NashMTL (Navon et al., 2022) to visualize

how FAMO balances different loss functions. The model parameter θ = (θ1, θ2) ∈ R2
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Figure 4.2: The average loss ℓ0 and the two task losses ℓ1 and ℓ2 for the toy
example.

and the task losses are ℓ1 and ℓ2:

ℓ1(θ) = 0.1 · (c1(θ)f1(θ) + c2(θ)g1(θ)) and ℓ2(θ) = c1(θ)f2(θ) + c2(θ)g2(θ), where

f1(θ) = log
(

max(|0.5(−θ1 − 7)− tanh (−θ2)|, 0.000005)
)

+ 6,

f2(θ) = log
(

max(|0.5(−θ1 + 3)− tanh (−θ2) + 2|, 0.000005)
)

+ 6,

g1(θ) =
(
(−θ1 + 7)2 + 0.1 ∗ (−θ2 − 8)2

)
/10− 20,

g2(θ) =
(
(−θ1 − 7)2 + 0.1 ∗ (−θ2 − 8)2)

/
10− 20,

c1(θ) = max(tanh (0.5 ∗ θ2), 0) and c2(θ) = max(tanh (−0.5 ∗ θ2), 0).

We compare FAMO against Adam (Kingma and Ba, 2014), MGDA (Sener

and Koltun, 2018), PCGrad (Yu et al., 2020a), CAGrad (Liu et al., 2021), and

NashMTL (Navon et al., 2022). We then pick 5 initial points θinit ∈ {(−8.5, 7.5), (−8.5, 5), (0, 0), (9, 9), (10,−8)}
and plot the corresponding optimization trajectories with different methods in Fig-

ure 4.1. Note that the toy example is constructed such that naively applying Adam

on the average loss can cause the failure of optimization for task 1.

Observation: From Figure 4.1, we observe that FAMO, like all other gradient

manipulation methods, mitigates the CG and reaches the Pareto front for all five runs.

In the meantime, FAMO performs similarly to NashMTL and achieves a balanced

loss decrease even when the two task losses are improperly scaled. Finally, as shown in

the top-right of the plot, FAMO behaves similarly to Adam in terms of the training

time, which is 25× faster than NashMTL.
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4.7.2 MTL Performance

Multitask Supervised Learning. We consider four supervised benchmarks com-

monly used in prior MTL research (Liu et al., 2021, 2019b; Navon et al., 2022;

Pascal et al., 2021): NYU-v2 (Nathan Silberman and Fergus, 2012) (3 tasks),

CityScapes (Cordts et al., 2016) (2 tasks), QM-9 (Blum and Reymond, 2009) (11

tasks), and CelebA (Liu et al., 2015) (40 tasks). Specifically, NYU-v2 is an indoor

scene dataset consisting of 1449 RGBD images and dense per-pixel labeling with 13

classes. The learning objectives include image segmentation, depth prediction, and

surface normal prediction based on any scene image. The CityScapes dataset is similar

to NYU-v2 but contains 5000 street-view RGBD images with per-pixel annotations.

The QM-9 dataset is a widely used benchmark in graph neural network learning. It

consists of >130K molecules represented as graphs annotated with node and edge

features. We follow the same experimental setting used in NashMTL (Navon et al.,

2022), where the learning objective is to predict 11 properties of molecules. We use

110K molecules from the QM9 example in PyTorch Geometric (Fey and Lenssen,

2019), 10K molecules for validation, and the rest of 10K molecules for testing. The

characteristic of this dataset is that the 11 properties are at different scales, posing a

challenge for task balancing in MTL. Lastly, CelebA dataset contains 200K face images

of 10K different celebrities, and each face image is provided with 40 facial binary

attributes. Therefore, CelebA can be viewed as a 40-task MTL problem. Different

from NYU-v2, CityScapes, and QM-9, the number of tasks (K) in CelebA is much

larger, hence posing a challenge to learning efficiency.

We compare FAMO against 11 MTL optimization methods and a single-task

learning baseline: (1) Single task learning (STL), training an independent model (θ for

each task; (2) Linear scalarization (LS) baseline that minimizes ℓ0; (3) Scale-invariant

(SI) baseline that minimizes
∑

k log ℓk(θ), as SI is invariant to any scalar multiplication

of task losses; (4) Dynamic Weight Average (DWA) (Liu et al., 2019b), a heuristic

for adjusting task weights based on rates of loss changes; (5) Uncertainty Weighting
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Segmentation Depth Surface Normal

Method
mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓ Angle Dist ↓ Within t◦ ↑ MR ↓ ∆m% ↓

Mean Median 11.25 22.5 30

STL 38.30 63.76 0.6754 0.2780 25.01 19.21 30.14 57.20 69.15

LS 39.29 65.33 0.5493 0.2263 28.15 23.96 22.09 47.50 61.08 8.89 5.59
SI 38.45 64.27 0.5354 0.2201 27.60 23.37 22.53 48.57 62.32 7.89 4.39
RLW 37.17 63.77 0.5759 0.2410 28.27 24.18 22.26 47.05 60.62 11.22 7.78
DWA 39.11 65.31 0.5510 0.2285 27.61 23.18 24.17 50.18 62.39 7.67 3.57
UW 36.87 63.17 0.5446 0.2260 27.04 22.61 23.54 49.05 63.65 7.44 4.05
MGDA 30.47 59.90 0.6070 0.2555 24.88 19.45 29.18 56.88 69.36 6.00 1.38
PCGrad 38.06 64.64 0.5550 0.2325 27.41 22.80 23.86 49.83 63.14 8.00 3.97
GradDrop 39.39 65.12 0.5455 0.2279 27.48 22.96 23.38 49.44 62.87 7.00 3.58
CAGrad 39.79 65.49 0.5486 0.2250 26.31 21.58 25.61 52.36 65.58 4.56 0.20
IMTL-G 39.35 65.60 0.5426 0.2256 26.02 21.19 26.20 53.13 66.24 3.78 -0.76
NashMTL 40.13 65.93 0.5261 0.2171 25.26 20.08 28.40 55.47 68.15 2.11 -4.04

FAMO 38.88 64.90 0.5474 0.2194 25.06 19.57 29.21 56.61 68.98 3.44 -4.10

Table 4.1: Results on NYU-v2 dataset (3 tasks). Each experiment is repeated
over 3 random seeds and the mean is reported. The best average result is marked
in bold. MR and ∆m% are the main metrics for MTL performance.

(UW) (Kendall et al., 2018) uses task uncertainty as a proxy to adjust task weights;

(6) Random Loss Weighting (RLW) (Lin et al., 2021) that samples task weighting

whose log-probabilities follow the normal distribution; (7) MGDA (Sener and Koltun,

2018) that finds the equal descent direction for each task; (8) PCGrad (Yu et al.,

2020a) proposes to project each task gradient to the normal plan of that of other tasks

and combining them together in the end; (9) CAGrad (Liu et al., 2021) optimizes the

average loss while explicitly controls the minimum decrease across tasks; (10) IMTL-

G (Liu et al., 2020) finds the update direction with equal projections on task gradients;

(11) GradDrop (Chen et al., 2020) that randomly dropout certain dimensions of the

task gradients based on how much they conflict; (12) NashMTL (Navon et al., 2022)

formulates MTL as a bargaining game and finds the solution to the game that benefits

all tasks. For FAMO, we choose the best hyperparameter γ ∈ {0.0001, 0.001, 0.01}
based on the validation loss. Specifically, we choose γ equals 0.01 for the CityScapes

dataset and 0.001 for the rest of the datasets.

Evaluation: We consider two metrics (Navon et al., 2022) for MTL: 1) ∆m%,

the average per-task performance drop of a method m relative to the STL baseline
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Method
µ α ϵHOMO ϵLUMO ⟨R2⟩ ZPVE U0 U H G cv MR ↓ ∆m% ↓

MAE ↓
STL 0.07 0.18 60.6 53.9 0.50 4.53 58.8 64.2 63.8 66.2 0.07

LS 0.11 0.33 73.6 89.7 5.20 14.06 143.4 144.2 144.6 140.3 0.13 6.45 177.6
SI 0.31 0.35 149.8 135.7 1.00 4.51 55.3 55.8 55.8 55.3 0.11 3.55 77.8
RLW 0.11 0.34 76.9 92.8 5.87 15.47 156.3 157.1 157.6 153.0 0.14 8.00 203.8
DWA 0.11 0.33 74.1 90.6 5.09 13.99 142.3 143.0 143.4 139.3 0.13 6.27 175.3
UW 0.39 0.43 166.2 155.8 1.07 4.99 66.4 66.8 66.8 66.2 0.12 4.91 108.0
MGDA 0.22 0.37 126.8 104.6 3.23 5.69 88.4 89.4 89.3 88.0 0.12 5.91 120.5
PCGrad 0.11 0.29 75.9 88.3 3.94 9.15 116.4 116.8 117.2 114.5 0.11 4.73 125.7
CAGrad 0.12 0.32 83.5 94.8 3.22 6.93 114.0 114.3 114.5 112.3 0.12 5.45 112.8
IMTL-G 0.14 0.29 98.3 93.9 1.75 5.70 101.4 102.4 102.0 100.1 0.10 4.36 77.2
NashMTL 0.10 0.25 82.9 81.9 2.43 5.38 74.5 75.0 75.1 74.2 0.09 2.09 62.0

FAMO 0.15 0.30 94.0 95.2 1.63 4.95 70.82 71.2 71.2 70.3 0.10 3.27 58.5

Table 4.2: Results on QM-9 dataset (11 tasks). Each experiment is repeated over
3 random seeds and the mean is reported. The best average result is marked in
bold. MR and ∆m% are the main metrics for MTL performance.

Method

CityScapes CelebA

Segmentation Depth
MR ↓ ∆m% ↓ MR ↓ ∆m% ↓

mIoU ↑ Pix Acc ↑ Abs Err ↓ Rel Err ↓
STL 74.01 93.16 0.0125 27.77

LS 70.95 91.73 0.0161 33.83 6.50 14.11 4.15 6.28
SI 70.95 91.73 0.0161 33.83 9.25 14.11 7.20 7.83
RLW 74.57 93.41 0.0158 47.79 9.25 24.38 1.46 5.22
DWA 75.24 93.52 0.0160 44.37 6.50 21.45 3.20 6.95
UW 72.02 92.85 0.0140 30.13 6.00 5.89 3.23 5.78
MGDA 68.84 91.54 0.0309 33.50 9.75 44.14 14.85 10.93
PCGrad 75.13 93.48 0.0154 42.07 6.75 18.29 3.17 6.65
GradDrop 75.27 93.53 0.0157 47.54 6.00 23.73 3.29 7.80
CAGrad 75.16 93.48 0.0141 37.60 5.75 11.64 2.48 6.20
IMTL-G 75.33 93.49 0.0135 38.41 4.00 11.10 0.84 4.67
NashMTL 75.41 93.66 0.0129 35.02 2.00 6.82 2.84 4.97

FAMO 74.54 93.29 0.0145 32.59 6.25 8.13 1.21 4.72

Table 4.3: Results on CityScapes (2 tasks) and CelebA (40 tasks) datasets. Each
experiment is repeated over 3 random seeds and the mean is reported. The best
average result is marked in bold. MR and ∆m% are the main metrics for MTL
performance.

denoted as b: ∆m% = 1
K

∑K
k=1(−1)δk(Mm,k−Mb,k)/Mb,k×100, where Mb,k and Mm,k

are the STL and m’s value for metric Mk. δk = 1 (or 0) if the Mk is higher (or lower)

the better. 2) Mean Rank (MR): the average rank of each method across tasks.
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For instance, if a method ranks first for every task, MR will be 1.

Observation: Results on the four benchmark datasets are provided in Table 4.1, 4.2,

and 4.3. We observe that FAMO performs consistently well across different supervised

learning MTL benchmarks compared to other gradient manipulation methods. In

particular, it achieves state-of-the-art results in terms of ∆m% on the NYU-v2 and

QM-9 datasets.

Figure 4.3: Training Success Rate and Time.

Method
Success ↑

(mean ± stderr)

LS (lower bound) 0.49 ±0.07
STL (proxy for upper bound) 0.90 ±0.03

PCGrad (Yu et al., 2020a) 0.72 ±0.02
Soft Modularization (Yang et al., 2020) 0.73 ±0.04
CAGrad 0.83 ±0.05
NashMTL (Navon et al., 2022) (every 1) 0.91 ±0.03
NashMTL (Navon et al., 2022) (every 50) 0.85 ±0.02
NashMTL (Navon et al., 2022) (every 100) 0.87 ±0.03

NashMTL (ours) (every 1) 0.80 ±0.13
NashMTL (ours) (every 50) 0.76 ±0.10
NashMTL (ours) (every 100) 0.80 ±0.12
UW (Kendall et al., 2018) 0.77 ±0.05

FAMO (ours) 0.83 ±0.05

Table 4.4: MTRL results on the Metaworld-10 benchmark.
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4.7.3 Multitask Reinforcement Learning.

We further apply FAMO to multitask reinforcement learning (MTRL) problems

as MTRL often suffers more from conflicting gradients due to the stochastic nature of

reinforcement learning (Yu et al., 2020a). Following CAGrad (Liu et al., 2021), we

apply FAMO on the MetaWorld (Yu et al., 2020b) MT10 benchmark, which consists

of 10 robot manipulation tasks with different reward functions. Following (Sodhani

et al., 2021), we use Soft Actor-Critic (SAC) (Haarnoja et al., 2018) as the underlying

RL algorithm, and compare against baseline methods including LS (SAC with a

shared model) (Yu et al., 2020b), Soft Modularization (Yang et al., 2020) (an MTL

network that routes different modules in a shared model to form different policies),

PCGrad (Yu et al., 2020a), CAGrad and NashMTL (Navon et al., 2022). The

experimental setting and hyperparameters all match exactly with those in CAGrad.

For NashMTL, we report the results of applying the NashMTL update once per

{1, 50, 100} iterations.2 The results for all methods are provided in Table 4.4.

From Table 4.4, we observe that FAMO performs comparably to CAGrad and

outperforms PCGrad and the average gradient descent baselines by a large margin.

FAMO also outperforms NashMTL based on our implementation. Moreover, FAMO

is significantly faster than NashMTL, even when it is applied once every 100 steps.

4.7.4 MTL Efficiency (Training Time Comparison)

Figure 4.4 provides the FAMO’s average training time per epoch against that

of the baseline methods.

Observation: From the figure, we observe that FAMO introduces negligible overhead

across all benchmark datasets compared to the LS method, which is, in theory, the

lower bound for computation time. In contrast, methods like NashMTL have much

2We could not reproduce the MTRL results of NashMTL exactly, so we report both the results
from the original paper and our reproduced results.
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Figure 4.4: Average training time per epoch for different MTL optimization
methods. We report the relative training time of a method to that of the linear
scalarization (LS) method (which uses the average gradient).

longer training time compared to FAMO. More importantly, the computation cost of

these methods scales with the number of tasks. In addition, note that these methods

also take at least O(K) space to store the task gradients, which is impractical for large

models in the many-task setting (i.e., when m = |θ| and K are large).

4.7.5 Ablation on γ

In this section, we provide the ablation study on the regularization coefficient

γ in Figure 4.5.

Figure 4.5: Ablation over γ: we plot the performance of FAMO (in terms of
∆m% using different values of γ from {0.0001, 0.001, 0.01} on the four supervised
MTL benchmarks.

Observation: From Figure 4.5, we can observe that choosing the right regularization

coefficient can be crucial. But except for CityScapes, FAMO performs reasonably

well using all different γs. The problem with CityScapes is that one of the task losses

is close to 0 at the very beginning, hence small changes in task weighting can result in
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very different loss improvement. Therefore we conjecture that using a larger γ, in this

case, can help stabilize MTL.

4.8 Related Work

In this section, we provide a brief summary of three lines of related work. The

first is the field of multiobjective optimization, where the goal is to optimize a vector

of objectives simultaneously. Methods in this area often aim to find a single Pareto

optimal solution or a set of Pareto optimal solutions that approximate the Pareto

front formed by these objectives. It is important to note that our primary focus is not

on advancing multiobjective optimization itself; rather, we concentrate on optimizing

a linear combination of different objectives. Specifically, we address the challenge of

conflicting gradients that arise when optimizing this linearly combined scalar loss. The

second line of related work involves methods that explicitly mitigate the conflicting

gradients (CG) problem in multitask learning (MTL). These methods often form a

new update dt at each step t from linearly combining all task gradients. Hence, these

methods are also referred to as the gradient manipulation methods. The third line of

related work involves other methods that address MTL from a different perspective

than optimization, which includes methods that form different task groupings and

methods that design new neural architectures for MTL.

Multiobjective Learning Multiobjective optimization, introduced by Vilfredo

Pareto in 1896 (Pareto, 1906), was initially developed in economics and political

science. Various approaches have since been proposed to address multiobjective

optimization challenges. No-preference methods minimize the distance between the

final objective vector and a reference vector formed from predefined lower bounds

for each objective (Fodor and Roubens, 1994; Miettinen, 1998). A priori methods

use linear scalarizing weights (Ishibuchi and Murata, 1998) to form a weighted scalar

objective that aligns with specified preferences. The ϵ-constrained method reformulates
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the problem lexicographically, optimizing less-preferred objectives under constraints

that prioritize more-preferred ones (Miettinen, 1998). Other approaches focus on

identifying the entire Pareto front for user selection (Das and Dennis, 1998; Motta

et al., 2012; Messac et al., 2003; Messac and Mattson, 2004; Mueller-Gritschneder

et al., 2009; Erfani and Utyuzhnikov, 2011), while interactive methods iteratively

refine solutions with user input (Miettinen et al., 2008). More relevant to our work,

the multiple gradient descent algorithm (MGDA) (Désidéri, 2012; Sener and Koltun,

2018) proposes to directly optimize towards the Pareto front, and it turns out that the

MGDA algorithm can also mitigate the conflicting gradient issues. However, MGDA

does not have control over which point on the Pareto front the algorithm arrives at.

In practice, MGDA can make extremely slow progress if any of the task loss has a

gradient with a small norm.

Gradient Manipulation Methods for Multitask Learning Gradient manip-

ulation methods are specifically designed to balance the losses of different tasks in

multitask learning by adjusting their gradients during optimization. These methods

aim to steer the optimization trajectory toward a more uniform decrease across all

task losses, mitigating the issue of conflicting gradients. By doing so, they help ensure

that progress in learning one task does not come at the expense of others, leading to

more balanced and effective multitask models.

The simplest form of gradient manipulation is to re-weight the objective losses

based on specific criteria, e.g., uncertainty (Kendall et al., 2018), gradient norm (Chen

et al., 2018), or difficulty (Guo et al., 2018). These methods are mostly heuristics

and their performance can be unstable. Recently, two methods (Sener and Koltun,

2018; Yu et al., 2020a) that manipulate the gradients to find a better local update

vector have become popular. Sener et al (Sener and Koltun, 2018) view MTL as a

multi-objective optimization problem, and use multiple gradient descent algorithm for

optimization. PCGrad (Yu et al., 2020a) identifies a major optimization challenge

for MTL, the conflicting gradients, and proposes to project each task gradient to
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the normal plane of other task gradients before combining them to form the final

update vector. Though yielding good empirical performance, both methods can only

guarantee convergence to a Pareto-stationary point, but not knowing where it exactly

converges to. More recently, GradDrop (Chen et al., 2020) randomly drops out task

gradients based on how much they conflict. IMTL-G (Liu et al., 2020) seeks an update

vector that has equal projections on each task gradient. RotoGrad (Javaloy and

Valera, 2021) separately scales and rotates task gradients to mitigate optimization

conflict. CAGrad (Liu et al., 2021) proposes to find an update vector that maximizes

the worst task improvement while staying close to the gradient of the average loss for

convergence. FAMO can be viewed as amortizing CAGrad’s computation over the

course of optimization.

Multitask Learning via Task Grouping or Architecture Design Task grouping

refers to grouping K tasks into n < k clusters and learning n models for each cluster.

The key is estimating the amount of positive knowledge transfer incurred by grouping

certain tasks together and then identifying which tasks should be grouped (Thrun

and O’Sullivan, 1996; Zamir et al., 2018; Standley et al., 2020; Shen et al., 2021; Fifty

et al., 2021). Novel neural architectures for multitask learning include hard-parameter-

sharing methods, which decompose a neural network into task-specific modules and a

shared feature extractor using manually designed heuristics (Kokkinos, 2017; Long

et al., 2017; Bragman et al., 2019), and soft-parameter-sharing methods, which learn

which parameters to share (Misra et al., 2016; Ruder et al., 2019; Gao et al., 2020; Liu

et al., 2019b). Recent studies extend neural architecture search for multitask learning

by learning where to branch a network to have task-specific modules (Guo et al., 2020;

Bruggemann et al., 2020).

94



4.9 Summary

In this work, we introduce FAMO, a fast optimization method for multitask

learning (MTL) that mitigates the conflicting gradients using O(1) space and time. As

multitasking models gain more attention, we believe designing efficient but effective

optimizers like FAMO for MTL is crucial. FAMO balances task losses by ensuring

each task’s loss decreases approximately at an equal rate. Empirically, we observe

that FAMO can achieve competitive performance against the state-of-the-art MTL

gradient manipulation methods. One limitation of FAMO is its dependency on

the regularization parameter γ, which is introduced due to the stochastic update of

the task weighting logits w. Future work can investigate a more principled way of

determining γ. This result represents the completion of our efforts to design an effective

multitask optimizer that mitigates conflicting gradient issues while being efficient for

practical training (C1, Chapter 1.1). In the next chapter, we will switch our focus

from multitask learning to continual learning, and introduce a novel algorithm for

continually growing neural networks to facilitate continual learning.
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Chapter 5: Firefly: A Framework for Neural

Network Expansion

This section introduces Firefly, a general framework for expanding neural

networks through the addition of neurons. The addition strategy emulates the steepest

descent concept in the parameter space of all architectures rather than in the parameter

space given a fixed architecture. Specifically, new neurons are incorporated in a manner

that maximally reduces a specified loss function. Firefly is designed to be both task-

agnostic and architecture-agnostic. The method is suitable for continual training

within a single dataset, loss function, or task—applicable when a model reaches its

learning capacity. Additionally, Firefly supports sequential learning across multiple

datasets, loss functions, or tasks, enabling the model to maintain performance on

previously learned datasets while effectively adapting to new ones. In the following,

we present the motivation behind growing networks for continual learning (Section 5.1)

and then introduce the Firefly architecture descent method (Section 5.2).

5.1 Motivation

Although biological brains are developed and shaped by complex progressive

growing processes, most existing artificial deep neural networks are trained under fixed

network structures (or architectures). Efficient techniques that can progressively grow

neural network structures can allow us to jointly optimize the network parameters

and structures to achieve higher accuracy and computational efficiency, especially in

dynamically changing environments. For instance, it has been shown that accurate and

energy-efficient neural networks can be learned by progressively growing the network

architecture starting from a relatively small network (Liu et al., 2019a; Wang et al.,

2019). Moreover, previous works also indicate that knowledge acquired from previous

tasks can be transferred to new and more complex tasks by expanding the network
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trained on previous tasks to a functionally equivalent larger network to initialize the

new tasks (Chen et al., 2016; Wei et al., 2016). In addition, dynamically growing neural

network has also been proposed as a promising approach for preventing the challenging

catastrophic forgetting problem in Continual Learning (Rusu et al., 2016; Yoon et al.,

2017; Rosenfeld and Tsotsos, 2018; Li et al., 2019). In this work, we introduce firefly

neural architecture descent, a general and flexible framework for progressively growing

neural networks. Our method is a local descent algorithm inspired by the typical

gradient descent and splitting steepest descent. It grows a network by finding the

best larger networks in a functional neighborhood of the original network whose size is

controlled by a step size ϵ, which contains a rich set of networks that have various

(more complex) structures, but are ϵ-close to the original network in terms of the

function that they represent. The key idea is that, when ϵ is small, the combinatorial

optimization on the functional neighborhood can be simplified to a greedy selection,

and therefore can be solved efficiently in practice.

5.2 Firefly Neural Architecture Descent

In this section, we start with introducing the general framework (Section 5.2.1)

of firefly neural architecture descent. Then we discuss how the framework can be

applied to grow a network both wider and deeper (Section 5.2.2-5.2.3). To illustrate

the flexibility of the framework, we demonstrate how it can help tackle catastrophic

forgetting in Continual Learning (Section 5.2.4).

5.2.1 The General Framework

We start with the general problem of jointly optimizing neural network pa-

rameters and model structures. Let Ω be a space of neural networks with different

parameters and structures (e.g., networks of various widths and depths). Our goal is

to solve

arg min
f

{
L(f) s.t. f ∈ Ω, C(f) ≤ η

}
, (5.1)
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Figure 5.1: An illustration of three different growing methods within firefly neural
architecture descent. Both δ and h are trainable perturbations.

where L(f) is the training loss function and C(f) is a complexity measure of the

network structure that reflects the computational or memory cost. This formulation

poses a highly challenging optimization problem in a complex, hierarchically structured

space.

We approach (5.1) with a steepest descent type algorithm that generalizes

typical parametric gradient descent and the splitting steepest descent of Liu et al.

(2019a), with an iterative update of the form

ft+1 = arg min
f

{
L(f) s.t. f ∈ ∂(ft, ϵ), C(f) ≤ C(ft) + ηt

}
, (5.2)

where we find the best network ft+1 in neighborhood set ∂(ft, ϵ) of the current

network ft in Ω, whose complexity cannot exceed that of ft by more than a threshold

ηt.

Here, ∂(ft, ϵ) denotes a neighborhood of the current network ft in the function

space, defined as the set of functions f such that the output of f is within an O(ϵ)

deviation from ft for all inputs x, i.e., f(x) = ft(x) + O(ϵ). The neighborhood is

parameterized by ϵ, which specifies the maximum allowable deviation in the output

between f and ft. ϵ can be viewed as a small step size, which ensures that the network

changes smoothly across iterations, and importantly, allows us to use Taylor expansion

to significantly simplify the optimization (5.2) to yield practically efficient algorithms.

The update rule in (5.2) is highly flexible and reduces to different algorithms
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Algorithm 5 Firefly Neural Architecture Descent

Input: Loss function L(f); initial small network f0; search neighborhood ∂(f, ϵ);
maximum increase of size {ηt}.
Repeat: At the t-th growing phase:
1. Optimize the parameter of ft with fixed structure using a typical optimizer for
several epochs.
2. Minimize L(f) in f ∈ ∂(ft, ϵ) without the complexity constraint (see, e.g., (5.4))
to get a large over-grown network f̃t+1 by performing gradient descent.
3. Select the top ηt neurons in f̃t+1 with the highest importance measures to get
ft+1 (see, e.g., (5.6)).

with different choices of ηt and ∂(ft, ϵ). In particular, when ϵ is infinitesimal, by taking

ηt = 0 and ∂(ft, ϵ) the typical Euclidean ball on the parameters, (5.2) reduces to

standard gradient descent which updates the network parameters with architecture

fixed. However, by taking ηt > 0 and ∂(ft, ϵ) a rich set of neural networks with

different, larger network structures than ft, we obtain novel architecture descent rules

that allow us to incrementally grow networks.

In practice, we alternate between parametric descent and architecture descent

(see Algorithm 5). Because architecture descent increases the network size, it is

called less frequently (e.g., only when a parametric local optimum is reached). From

the optimization perspective, performing architecture descent allows us to lift the

optimization into a higher dimensional space with more parameters, and hence escape

local optima that cannot be escaped in the lower dimensional space (of the smaller

models).

In the sequel, we instantiate the neighborhood ∂(ft, ϵ) for growing wider and

deeper networks, and for Continual Learning, and discuss how to solve the optimization

in (5.2) efficiently in practice.

5.2.2 Growing Network Width

We discuss how to define ∂(ft, ϵ) to progressively build increasingly wider

networks, and then introduce how to efficiently solve the optimization in practice. We
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illustrate the idea with two-layer networks, but an extension to multiple layers works

straightforwardly. Assume ft is a two-layer neural network (with one hidden layer) of

the form ft(x) =
∑m

i=1 σ(x, θi), where σ(x, θi) denotes its i-th neuron with parameter

θi and m is the number of neurons (a.k.a. width). There are two ways to introduce

new neurons to build a wider network, including splitting existing neurons in ft and

introducing new neurons; see Figure 5.1.

Splitting Existing Neurons Following Liu et al. (2019a), an essential approach to

growing neural networks involves splitting a neuron1 θiℓ into a set of neurons {θiℓ}
with weights{wil}. This replaces σ(x, θi) with

∑
ℓ wiℓσ(x, θiℓ) in ft, where

∑
ℓ wiℓ = 1

and ∥θiℓ − θi∥2 ≤ ϵ, ∀ℓ. These constraints ensure that the new network remains ϵ-close

to the original network.

As argued in Liu et al. (2019a), when ft reaches a parametric local optimum

and wiℓ ≥ 0, a simple binary splitting scheme is applied, splitting a neuron θi into

two equally weighted neurons in opposite update directions. Specifically, σ(x, θi)⇒
1
2

(
σ(x, θi + ϵδi) + σ(x, θi − ϵδi)

)
, where δi denotes the update direction.

Growing New Neurons Splitting the existing neurons results in a local change, as

the parameters of the new neurons remain close to those of the original neurons. A way

to introduce non-local updates is to add new neurons with arbitrary parameters far

away from the existing neurons. This is achieved by replacing ft with ft(x) + ϵσ(x, δ),

where δ now denotes a trainable parameter of the new neuron and the neuron is

multiplied by ϵ to ensure the new network is close to ft in function. Overall, to grow

ft(x) =
∑

i σ(x, θi) wider, the neighborhood set ∂(ft, ϵ) include functions of the form

fε,δ(x) =
m∑
i=1

1

2

(
σ(x, θi + εiδi) + σ(x, θi − εiδi)

)
+

m+m′∑
i=m+1

εiσ(x, δi),

1A neuron is determined by both σ and θ. But since σ is fixed under our discussion, we abuse the
notation and use θ to represent a neuron.

100



where we potentially split all the neurons in ft and add upto m′ new non-local neurons

(m′ is a hyperparameter). Whether each new neuron will eventually be added is

controlled by an individual step-size εi that satisfies |εi| ≤ ϵ. If εi = 0, it means the

corresponding new neuron is not introduced.

Therefore, the number of new neurons introduced in fε,δ equals the ℓ0 norm

∥ε∥0 :=
∑m+m′

i=1 I(εi = 0). Here ε = [εi]
m+m′

i=1 and δ = [δi]
m+m′

i=1 .

Under this setting, the optimization in (5.2) can be framed as

min
ε,δ

{
L(fε,δ) s.t. ∥ε∥0 ≤ ηt, ∥ε∥∞ ≤ ϵ, ∥δ∥2,∞ ≤ 1

}
, (5.3)

where ∥δ∥2,∞ = maxi ∥δi∥2, which is constructed to prevent ∥δi∥2 from becoming

arbitrarily large.

Optimization It remains to solve the optimization in (5.3), which is challenging

due to the ℓ0 constraint on ε. However, when the step size ϵ is small, we can solve

it approximately with a simple two-step method: we first optimize δ and ε while

dropping the ℓ0 constraint, and then re-optimize ε with Taylor approximation on the

loss, which amounts to simply picking the new neurons with the largest contribution

to the decrease of loss, measured by the gradient magnitude.

Step One. Optimizing δ and ε without the sparsity constraint ∥ε∥0 ≤ ηt,

that is,

[ε̃, δ̃] = arg min
ε,δ

{
L(fε,δ) s.t. ∥ε∥∞ ≤ ϵ, ∥δ∥2,∞ ≤ 1

}
. (5.4)

In practice, we solve the optimization with gradient descent by turning the constraint

into a penalty. Because ϵ is small, we only need to perform a small number of gradient

descent steps.

Step Two. Re-optimizing ε with Taylor approximation on the loss. To do so,

note that when ϵ is small, we have by Taylor expansion:

L(fε,δ̃) = L(f) +
m+m′∑
i=1

εisi + O(ϵ2), si =
1

ε̃i

∫ ε̃i

0

∇ζiL(f[ε̃¬i,ζi],δ̃
)dζi, (5.5)
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where [ε̃¬i, ζi] denotes replacing the i-th element of ε̃ with ζi, and si is an integrated

gradient that measures the contribution of turning on the i-th new neuron. In practice,

we approximate the integration in si by discrete sampling: si ≈ 1
n

∑n
z=1∇czL(f[ε̃¬i,cz ],δ̃

)

with cz = (2z − 1)/2nε̃i and n a small integer (e.g., 3). Therefore, optimizing ε with

fixed δ = δ̃ can be approximated by

ε̂ = arg min
ε

{m+m′∑
i=1

εisi s.t. ∥ε∥0 ≤ ηt, ∥ε∥∞ ≤ ϵ
}
. (5.6)

It is easy to see that finding the optimal solution reduces to selecting the neurons with

the largest gradient magnitude |si|. Precisely, we have ε̂i = −ϵ I(|si| ≥ |s(ηt)|) sign(si),

where |s(1)| ≤ |s(2)| ≤ · · · is the increasing ordering of {|si|}. Finally, we take

ft+1 = fε̂,δ̃.

It is possible to further re-optimize δ with fixed ε and repeat the alternating

optimization iteratively. However, performing the two steps above is computationally

efficient and already solves the problem reasonably well as we observe in practice.

Remark When we include only neural splitting in ∂(ft, ϵ), our method is equivalent

to splitting steepest descent (Liu et al., 2019a), but with a simpler and more direct

gradient-based optimization rather than solving the eigenproblems (Liu et al., 2019a;

Wang et al., 2019).

5.2.3 Growing New Layers

We now introduce how to grow new layers under our framework. The idea is

to include in ∂(ft, ϵ) deeper networks with extra trainable residual layers and to select

the layers (and their neurons) that contribute the most to decreasing the loss using

the similar two-step method described in Section 5.2.2.

Assume ft is a d-layer deep neural network of form ft = gd ◦ · · · ◦ g1, where ◦
denotes function composition. To grow new layers, we include in ∂(ft, ϵ) functions of
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the form

fε,δ = gd ◦ (I + hd−1) · · · (I + h2) ◦ g2 ◦ (I + h1) ◦ g1, with hℓ(x) =
m′∑
i=1

εℓiσ(x, δℓi).

Here, δℓi denotes a trainable parameter of the i-th newly introduced neuron, and

ϵℓi ∈ [−ϵ, ϵ] is a step size that determines the contribution of the (ℓi)-th new neuron.

in which we insert new residual layers of form I + hℓ; here I is the identity map,

and hℓ is a layer that can consist of upto m′ newly introduced neurons. As before,

the (ℓi)-th neuron is turned off if εℓi = 0, and the whole layer hℓ is turned off

if εℓi = 0 for all i ∈ [1,m′]. Therefore, the number of new neurons introduced

in fε,δ equals ∥ε∥0 :=
∑

iℓ I(ϵiℓ ̸= 0), and the number of new layers added equals

∥ε∥∞,0 :=
∑

ℓ I(maxi |εℓi| ≠ 0). Because adding new neurons and new layers have

different costs, they can be controlled by two separate budget constraints (denoted by

ηt,0 and ηt,1, respectively). Then the optimization of the new network can be framed

as

min
ε,δ

{
L(fε,δ) s.t. ∥ε∥0 ≤ ηt,0, ∥ε∥∞,0 ≤ ηt,1, ∥ε∥∞ ≤ ϵ, ∥δ∥2,∞ ≤ 1

}
, (5.7)

where ∥δ∥2,∞ = maxℓ,i ∥δℓi∥2. This optimization can be solved with a similar two-step

method to the one for growing width, as described in Section 5.2.2: we first find the

optimal [ϵ̃, δ̃] without the complexity constraints (including ∥ε∥0 ≤ ηt,0, ∥ε∥0,∞ ≤ ηt,1),

and then re-optimize ε with a Taylor approximation of the objective:

min
ε

{∑
ℓi

ϵℓisℓi s.t. ∥ε∥0 ≤ ηt,0, ∥ε∥∞,0 ≤ ηt,1

}
, where sℓi =

1

ε̃ℓi

∫ ε̃ℓi

0

∇ζℓiL(f[ε̃¬ℓi,ζℓi],δ̃
)dζℓi.

(5.8)

The solution can be obtained by sorting {|sℓi|} in descending order and selecting the

top-ranked neurons until the complexity constraint is violated.

Remark In practice, the methods described above can be applied to grow the network

both wider and deeper. Additionally, Firefly can be generalized to accommodata

other network growth settings without requiring individual mathematical detivations.
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Moreover, the space complexity to store all the intermediate variables is O(N + m′),

where N is the size of the sub-network we consider expanding and m′ is the number

of new neuron candidates.2

5.2.4 Growing Networks in Continual Learning

Continual Learning (CL) studies the problem of learning a sequence of different

tasks (datasets) that arrive in a temporal order, so that whenever the agent is

presented with a new task, it no longer has access to the previous tasks. As a result,

one major difficulty of CL is to avoid catastrophic forgetting, in that learning the

new tasks severely interferes with the knowledge learned previously and causes the

agent to “forget” how to do previous tasks. One branch of approaches in CL consider

dynamically growing networks to avoid catastrophic forgetting (Rusu et al., 2016; Li

and Hoiem, 2017; Yoon et al., 2017; Li et al., 2019; Hung et al., 2019a). However, most

existing growing-based CL methods use hand-crafted rules to expand the networks

(e.g. uniformly expanding each layer) and do not explicitly seek for the best growing

approach under a principled optimization framework. To address this problem, we

propose the Firefly architecture descent framework.

Let Dt denote the dataset associated with the task t and ft the network trained

for Dt. At each step t, we maintain a composite network f1:t which aggregates all

previous networks {fs}ts=1. Each fs is retrievable via a task-specific binary mask that

activates only the relevant neurons for task s. When task t + 1 arrives with Dt+1, we

construct ft+1 by leveraging the existing neurons in f1:t as much as possible, while

adding a controlled number of new neurons to capture the new information in Dt+1.

Specifically, we design ft+1 to include three types of neurons (see Figure 5.2):

1) Old neurons from f1:t, whose parameters are locked during the training of ft+1 on

the new task Dt+1. This does not introduce extra memory costs. 2) Old neurons from

f1:t, whose parameters are unlocked and updated during the training of ft+1 on

2Because all we need to store is the gradient, which is of the same size as the original parameters.
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Figure 5.2: Illustration of how Firefly grows networks in Continual Learning.

Dt+1. This introduces new neurons and hence increases the memory size. It is similar

to network splitting in Section 5.2.2 in that the new neurons are evolved from an old

neuron, but only one copy is generated and the original neuron is not discarded. 3)

New neurons introduced in the same way as in Section 5.2.2,3 which also increases the

memory cost. Overall, assuming f1:t(x) =
∑m

i=1 σ(x, θi), possible candidates of ft+1

indexed by ε, δ are of the form:

fε,δ(x) =
m∑
i=1

σ(x, θi + εiδi) +
m+m′∑
i=m+1

εiσ(x, δi), (5.9)

where εi ∈ [−ϵ, ϵ] again controls if the corresponding neuron is locked or unlocked

(for i ∈ [m]), or if the new neuron should be introduced (for i > m). The new

neurons introduced into the memory are ∥ε∥0 =
∑m+m′

i=1 I(ε ≠ 0). The optimization of

ft+1 = fε∗,δ∗ can be framed as

ε∗, δ∗ = arg min
ε,δ

{
L(fε,δ; Dt+1) s.t. ∥ε∥0 ≤ ηt, ∥ε∥∞ ≤ ϵ, ∥δ∥2,∞ ≤ 1

}
, (5.10)

where L(f ;Dt+1) denotes the training loss on dataset Dt+1. The same two-step method

in Section 5.2.2 can be applied to solve the optimization. After ft+1 is constructed,

the new master network f1:t+1 is constructed by merging f1:t and ft+1 and the binary

masks of the previous tasks are updated accordingly.

3It is also possible to introduce new layers for Continual Learning, which we leave as an interesting
direction for future work.
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Algorithm 6 summarizes the pipeline of applying firefly descent on growing

neural architectures for continual learning problems. To lock or unlock a specific

neuron, we apply a mask that multiplies with each neuron’s output. When the mask

is set to 0, the neuron is locked. Otherwise, we unlock this neuron by training a binary

mask. Concretely, assume ft(x) =
∑m

i=1 σ(x, θi), we put a mask µ ∈ [0, 1]m and ft(x)

becomes
∑m

i=1 µiσ(x, θi).
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Algorithm 6 Firefly Steepest Descent for Continual Learning

Input : A stream of datasets {D1,D2, . . . ,DT};
for task t = 1 : T do
if t = 1 then

Train f1 on D1 for several epochs until convergence.
Set mask µ1 to all 1 vector over f1.

else
Denote ft ← f1:t−1 and lock its weights.
Train a binary mask µt over ft on Dt for several epochs until conver-
gence.

end if
ft = ft[µt] // ft is re-initialized as the selected old neurons from f1:t−1 with their weights fixed.

while ft can not solve task t sufficiently well do
if t = 1 then

Grow ft by splitting existing neurons and growing new neurons.
else

Grow ft by unlocking existing neurons and growing new neurons.
end if
Train ft on Dt

end while
Update µt as the binary mask over ft.
Record the network mask µt, f1:t = f1:1−t ∪ ft.

end for

5.3 Empirical Results

We conduct four sets of experiments to verify the effectiveness of firefly neural

architecture descent. In particular, we first demonstrate the importance of introducing

additional growing operations beyond neuron splitting, as described in Liu et al.

(2019a) and then apply the firefly descent to both neural architecture search and

continual learning problems. In both applications, Firefly descent produces effective

yet compact networks.

107



5.3.1 Simple RBF Network

We start with growing a simple single-layer network to demonstrate the impor-

tance of adding new neurons instead of relying solely on neuron splitting, as described

in Liu et al. (2019a). In addition, we show the network growing strategy in Firefly

descent is efficient by conducting ablation experiments. Specifically, we adopt a

simple two-layer radial-basis function (RBF) network with one-dimensional input and

compare various methods that grow the network gradually from 1 to 10 neurons. The

training data consists of 1000 data points from a randomly generated RBF network.

We consider the following methods:

1. Firefly: our proposed firefly descent method for growing wider by splitting

neuron and adding upto m′ = 5 new neurons, as shown in Algorithm 5;

2. Firefly (split): firefly descent for growing wider with only neuron splitting (e.g.,

m′ = 0);

3. Splitting: the steepest splitting descent of Liu et al. (2019a);

4. RandSearch (split): randomly selecting one neuron and splitting in a random

direction, repeated k times to pick the best as the actual split; we take k = 3 to

match the time cost with our method;

5. RandSearch (split+new): the same as RandSearch (split) but with 5 randomly

initialized new neurons in the candidate during the random selecting;

6. Scratch: training networks with fixed structures starting from scratch.

We construct a following one-dimensional two-layer radial-basis function (RBF)

neural network with one-dimensional inputs,

f(x) =
m∑
i=1

wiσ(θi,1x + θi,2), where σ(t) = exp

(
−t2

2

)
, x ∈ R, (5.11)
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Figure 5.3: (a) Average training loss of different growing methods versus the
number of grown neurons. (b) Firefly descent with different numbers of new neuron
candidates.

where θi = [θ1,i, θ2,i] and wi ∈ R are the input and output weights of the i-th neuron,

respectively. We generate our true function by drawing m = 15 neurons with wi and

θi i.i.d. from N(0, 3). For dataset {x(ℓ), y(ℓ)}1000ℓ=1 , we generate them with x(ℓ) drawing

from a continuous uniform distribution U([−5, 5]) and let y(ℓ) = f(x(ℓ)). We apply

various growing methods to grow the network from one single neuron all the way up

to 12 neurons.

For the newly initialized neurons introduce during the growing in RandSearch

and Firefly, we draw the neurons from N(0, 0.1). For RandSearch, we finetune all the

randomly grown networks for 100 iterations. For Firefly, we also train the expanded

network for 100 iterations before calculating the score and picking the neurons. Further,

we update 10,000 iterations between consecutive growing steps.

Each experiment is repeated 20 times with different ground-truth RBF networks

and report the mean training loss in Figure 5.3(a).

Observation: As shown in Figure 5.3 (a), the methods with pure neuron splitting

(without adding new neurons) can easily get stuck at a relatively large training loss,

and splitting further does not help escape the local minimum. In comparison, all

methods that introduce additional new neurons can optimize the training loss to zero.

Moreover, Firefly grows neural networks better than random search under the same

candidate set of growing operations.

We also conduct a parameter sensitivity analysis on m′ in Figure 5.3(b), which
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shows the result of Firefly as we change the number m′ of the new neurons. We can

see that the performance improves significantly by even just adding one new neuron

in this case, and the improvement saturates when m′ is sufficiently large (m′ = 5 in

this case).

5.3.2 Growing Wider and Deeper Networks

We test the effectiveness of firefly descent for both growing network width

and depth. We use VGG-19, introduced by Simonyan and Zisserman (2014), as the

backbone network structure and compare our method with splitting steepest descent

(described by Liu et al. (2019a)), Net2Net (described by Chen et al. (2016)) and

neural architecture search by hill-climbing (NASH, described by Elsken et al. (2017)).

Net2Net grows networks uniformly by randomly selecting the existing neurons in each

layer. The network is initialized as a thinner version of VGG-19, with layers 0.125

times their original size. For splitting steepest descent, NASH, and our method, we

initialize VGG-19 with 16 channels per layer. For firefly descent, we grow the network

by splitting existing neurons and adding new neurons to widen the network. At each

step, we add m′ = 50 new neurons and set the budget to grow the size by 30% at each

step of our method.

For all the experiments including Net2Net, splitting steepest descent, NASH,

and our firefly descent, we grow 30% more neurons each time. Between two consecutive

grows, we finetuned the network for 160 epochs. For splitting steepest descent, we

follow the same setting as in the original splitting steepest descent paper (Liu et al.,

2019a). For NASH, we only apply the “Network morphism Type II” operation (Elsken

et al., 2017), which is equivalent to growing the network width by randomly splitting

the existing neurons. During the search phase, we follow the original paper’s setting,

sample 8 neighbor networks, train each of them for 17 epochs, and choose the best

one as a result.

For firefly descent, we grow a network by both splitting existing neurons and

110



adding new neurons to widen the network. We split all the existing neurons and add

m′ = 50 new neurons sampled from the normal distribution N(0, 0.1). We will also

train the expanded network for one epoch before calculating the score and picking the

neurons.

Growing Wider MobileNet V1 We also compare Firefly with other growing

methods on MobileNet V1 using the CIFAR-100 dataset. Same as splitting steepest

descent (Wu et al., 2020b), we start from a thinner MobilNet V1 with 32 channels in

each layer. We grow 35% more neurons each time, the other settings are the same as

the previous growing wider networks’ setting.
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Figure 5.4: Results and time consumption of growing increasingly wider networks
on CIFAR-100 using MobileNet V1 backbone

Observation: Figure 5.4 again shows that firefly splitting can outperform various

growing baselines on the same backbone network. Meanwhile, its time cost is much

smaller than splitting and NASH algorithm.

Growing Deeper Networks We test firefly descent for growing network depth.

We build a network with 4 blocks. Each block contains convolution layers with kernel

size 3. The first convolution layer in each block is stride two. For a simple and

clear explanation, we mark the number of layers in these 4 blocks as 12-12-12-12, for

example, which means each block contains 12 layers. Begin from 1-1-1-1, we grow the

network using firefly descent on MNIST, FashionMNIST, and SVHN, and compare it

with AutoGrow (Wen et al., 2019) and NASH (Elsken et al., 2017).
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For our method, we start from a 1-1-1-1 network with 16 channels in each layer.

We also insert 11 identity layers in each block, which roughly match the final number

of layers in AutoGrow. We apply our growing layer strategy described in Section

5.2.3 for growing new layers and apply both splitting existing neurons and adding

new neurons for widening the existing layers. When growing new layers, we introduce

m′ = 20 new neurons in each identity layer, when increasing the width of the existing

layers, we split all the existing neurons and add m′ = 20 new neurons. After expanding

the network, we train the network for one epoch before calculating the score. If the

identity layer remains 2 or more new neurons after selection, we add these identity

layers to the network and train with the existing network together. Otherwise, we will

remove all the new neurons and keep this layer as an identity map. For the existing

neurons, we grow 25% of the total width. For NASH, we apply “Network morphism

Type I” and “Network morphism Type II” together, which represent growing depth

by randomly inserting identity layer and growing width by randomly splitting the

existing neurons. During the search phase, we follow the original paper’s setting,

sample 8 neighbor networks, train each of them for 17 epochs, and choose the best

one as the growing result. Each time when we sample the neighborhood networks, we

grow the total width of the existing layers by 25% and then randomly insert one layer

in each block. For both our method and NASH, we grow 11 steps and finetune 40

epochs after each “grow” step. We also retrain the searched network for 200 epochs

after the last growth to get the final performance on each dataset. For AutoGrow, we

use the result report in the original paper.

Observation: Table 5.1 shows the result. We can see our method can grow a smaller

network to achieve AutoGrow’s performance and outperform the network searched

with NASH.
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Table 5.1: Result on growing Depth comparing with two baselines

Dataset Method Structure Param (M) Accuracy

MNIST
AutoGrow (Wen et al., 2019) 13-12-12-12 2.3 99.57
NASH (Elsken et al., 2017) 12-12-12-12 2.0 99.50

Firefly 12-12-12-12 1.9 99.59

FashionMNIST
AutoGrow (Wen et al., 2019) 13-13-13-13 2.3 94.47
NASH (Elsken et al., 2017) 12-12-12-12 2.2 94.34

Firefly 12-12-12-12 2.1 94.48

SVHN
AutoGrow (Wen et al., 2019) 12-12-12-11 2.2 97.08
NASH (Elsken et al., 2017) 12-12-12-12 2.0 96.90

Firefly 12-12-12-12 1.9 97.08

5.3.3 Cell-Based Neural Architecture Search

Next, we apply our method as a new way for improving cell-based Neural

Architecture Search (NAS). This approach has been explored in prior work (e.g. Zoph

et al., 2018; Liu et al., 2018a; Real et al., 2019). The idea of cell-based NAS is to learn

optimal neural network modules (called cells) from a predefined search space, so they

serve as good building blocks to composite complex neural networks. Previous works

mainly focus on using reinforcement learning or gradient-based methods to learn a

sparse cell structure from a predefined parametric template. Our method instead

gradually grows a small parametric template during training and obtains the final

network structure according to the growing pattern.

Following the setting in DARTS (Liu et al., 2018b), half of the CIFAR-10

training set is used as a validation set for growing. The search begins with a stacked

5-cell network, where the second and fourth cells are reduction cells, meaning all

operations next to the input of these cells are set to stride two. Within each cell,

SepConv and DilConv operation blocks are constructed, as described in DARTS (Liu

et al., 2018b). To apply our firefly descent, the last convolution layer in each block is

expanded, and a linear transform layer with the same output channels is added to

ensure consistent operation dimensions on the same edge. The number of channels of

the operations in each cell is set to 4-8-8-16-16, which is 0.25× of that in the original
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Darts. The last linear transform layer in each cell has channels 16-32-32-64-64. The

network is grown by splitting existing neurons and introducing new neurons, with one

cell selected sequentially during each growth step. This process is repeated for all

five cells twice, applying firefly descent ten times in total. At each step, all existing

neurons in the chosen cell are split, and 4, 8, 8, 16, and 16 new neurons are added,

respectively, for the five cells. The expanded network is trained for five epochs, and

25% of the neurons are selected for further growth. The network structure is then

searched for 100 epochs in total. All other training hyperparameters are set to the

same values as in DARTS (Liu et al., 2018b). During the search, the operation with

the largest width on each edge is selected as the final operation. If the width on an

edge is less than 20% of the initial width, the edge is assigned as an identity map in

the final structure. Only the selected operations in the final structure are retained,

while others are removed to match the baseline model size. For the final evaluation,

the channel width is increased to match the model size of the baselines. A sequentially

stacked 20-cell network is created, and cells are marked as 1-20. The search result is

applied to cells 1-6, 7, 8-13, 14, and 15-20 of the final evaluation network, respectively.

The initial channel width is increased to 40 to match the baseline model size. The

other training settings are kept the same as in DARTS (Liu et al., 2018b). The result

is averaged over 5 runs from our final evaluation model.

Observation: Table 5.2 reports the results comparing Firefly with several NAS

baselines. Our method achieves a similar or better performance compared with

those RL-based and gradient-based methods like ENAS or DARTS but with higher

computational efficiency in terms of the total search time.

5.3.4 Continual Learning

Finally, we apply our method to grow networks for Continual Learning

and compare with two state-of-the-art methods, Compact-Pick-Grow (CPG) (Hung

et al., 2019a) and Learn-to-grow (Li et al., 2019), both of which also progressively
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Method Search Time (GPU Days) Param (M) Error

NASNet-A (Zoph et al., 2018) 2000 3.1 2.83
ENAS (Pham et al., 2018) 4 4.2 2.91
Random Search 4 3.2 3.29± 0.15
DARTS (first order) (Liu et al., 2018b) 1.5 3.3 3.00± 0.14
DARTS (second order) (Liu et al., 2018b) 4 3.3 2.76± 0.09
Firefly 1.5 3.3 2.78± 0.05

Table 5.2: Performance compared with several NAS baseline
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Figure 5.5: (a) Average accuracy on 10-way split of CIFAR-100 under different
model size. We compare against Elastic Weight Consolidation (EWC) (Kirkpatrick
et al., 2017), Dynamic Expandable Network (DEN) (Yoon et al., 2017), Rein-
forced Continual Learning (RCL) (Xu and Zhu, 2018) and Compact-Pick-Grow
(CPG) (Hung et al., 2019a). (b) Average accuracy on 20-way split of CIFAR-100
dataset over 3 runs. Individual means train each task from scratch using the Full
VGG-16.

grow neural networks for learning new tasks. For our method, we grow the networks

starting from a thin variant of the original VGG-16 without fully connected layers.

Following the setting in Learn-to-Grow, we construct 10 tasks by randomly

partitioning CIFAR-100 into 10 or 20 subtasks. For both the 10-way split and the

20-way split of CIFAR-100, the experiment is repeated three times with different task

splits. To tackle the continual learning (CL) problem, the copy-exist-neuron strategy,

which reuses neurons from previous tasks, and the grow-new-neuron strategy, which

introduces new neurons, are applied. During each growth iteration, 15 new neurons

are added to each layer as candidates for expansion. After expanding the network,

the model is fine-tuned for fifty epochs on the new task. In the selection phase for the

20-way split, the top 256 neurons are chosen from the combined pool of copied and
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newly added neurons. For the 10-way split, the top 32, 128, 196, 256, 320, 384, 448, and

512 neurons are selected to evaluate performance under varying model sizes. Once

the neurons are selected, the expanded network is fine-tuned on the new task for one

hundred epochs.

Observation: Figure 5.5(a) shows the average accuracy and size of models at the end

of the 10 tasks learned by firefly descent, Learn-to-Grow, CPG and other CL baselines.

Firefly descent produces smaller networks with higher accuracy. Table 5.3 shows

the average accuracy and size learned at the end of 20 tasks. Extra growing epochs

refer to the epochs used for selecting the neurons for the next upcoming tasks, and

Individual refers to training a different model for each task. Firefly descent achieves

the smallest network with the best performance among all methods. Moreover, it is

more computationally more efficient than CPG when growing and picking the neurons

for the new tasks. Figure 5.5(b) shows the average accuracy over seen tasks on the fly.

Again, firefly descent outperforms CPG by a significant margin.

Method Param (M) Extra Growing Epochs Avg. Accuracy (20 tasks)

Individual 2565 - 88.85
CPG 289 420 90.75
CPG w/o FC 4 28 420 90.58
Firefly 26 80 91.03

Table 5.3: 20-way split lifelong image classification on CIFAR-100.

5.4 Related Work

This section reviews prior work on neural network growth for general purposes

and its application to continual learning. For a more comprehensive review of existing

methods in continual learning, we refer the readers to Section 7.3 in Chapter 7.

4CPG without fully connected layers is to align the model structure and model size with Firefly.
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Growing Neural Networks for General Purposes Growing neural networks

has been an active area of research for decades. Early studies focused on single-layer

systems, with Ash et al. introducing methods to add neurons (Ash, 1989), later

extended to deep networks (Fahlman and Lebiere, 1989). Stanley et al. applied

evolutionary algorithms to optimize network topology for reinforcement learning

tasks (Stanley and Miikkulainen, 2002).

The emergence of Deep Belief Networks (Hinton, 2009) popularized greedy

layer-wise pretraining using Restricted Boltzmann Machines Bengio et al. (2006);

Hinton et al. (2006). This approach was later simplified with Stacked Denoising

Autoencoders (Vincent et al., 2010). Recently, Wen et al. proposed automated depth-

growing policies to expand networks until performance plateaus (Wen et al., 2020), and

Maile et al. introduced weight initialization strategies to maximize orthogonality (Maile

et al., 2022). These methods focus on progressive growth to optimize network size but

do not minimize training costs for a given network size.

Prior work has also explored growing networks to enhance knowledge transfer.

Net2Net (Wei et al., 2016) introduced operations for widening and deepening networks

while preserving functional equivalence, enabling larger architectures for increased

capacity when learning new tasks. Network Morphism (Wei et al., 2016) extended this

concept with additional operations for architecture modification while maintaining

functional representation. However, these methods rely on random or heuristic-

based neuron selection strategies, which do not guarantee consistent architectural

improvements. Elsken et al. addressed this limitation by evaluating multiple candidate

architectures and selecting the best-performing one (Elsken et al., 2017), but this

approach incurs significant computational overhead.

A more systematic strategy, splitting steepest descent (Liu et al., 2019a),

optimizes neuron splitting by solving an eigenvalue-based optimization problem derived

from local second-order approximations. While this method is principled, it is limited

to splitting neurons and requires case-specific derivations for generalization. Moreover,
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its reliance on second-order information makes it computationally expensive in both

time and memory.

Hu et al. proposed an efficient path selection method that trains all potential

paths jointly and adds the best subsets to the network (Hu et al., 2019). However,

this approach is designed for cell-based networks and does not generalize easily. In

contrast, our firefly method treats individual neurons as the basic unit of growth,

enabling its application across diverse network structures and extending fast-growing

strategies to broader scenarios.

Growing for Continual Learning Continual learning represents a natural appli-

cation for growing neural networks, aimed at adapting to new tasks without forgetting

previously acquired knowledge. Early approaches like ProgressiveNet (Rusu et al.,

2016) expanded neural networks by locking weights associated with prior tasks, thus

preventing catastrophic forgetting. Learning without Forgetting (LwF) (Li and Hoiem,

2017) introduces a division within the network structure between shared and task-

specific components, with the latter expanding to accommodate new tasks. Dynamic

Expansion Net (Yoon et al., 2017) enhances this concept by applying sparse reg-

ularization to maintain the compactness of expansions. Subsequent developments

(Hung et al., 2019b,a) have incorporated pruning techniques to further improve model

compactness during growth. While previous methods rely on heuristic-based strategies

for network growth, the Firefly approach employs a principled framework that sys-

tematically optimizes neuron selection and network expansion. We posit that future

research could leverage the Firefly framework to develop a theoretical foundation for

network growth in continual learning contexts.

5.5 Summary

This chapter introduces a flexible framework for neural network expansion

using principled steepest descent. The framework supports mechanisms for growing
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networks in width and depth, addressing challenges in single-task and continual learn-

ing. Experimental results demonstrate state-of-the-art performance in benchmarks,

highlighting the framework’s efficiency and adaptability. Furthermore, we demonstrate

the effectiveness of our method on growing networks on both single tasks and continual

learning problems, in which our method consistently achieves the best results. Future

work can investigate various other growing methods for specific applications under

the general framework. This result represents the completion of our efforts to design

a general algorithm for growing neural networks (C2, Chapter 1.1). Based on Firefly,

one can grow any existing neural network to facilitate continual learning, but it still

requires explicit backpropagation for continual learning. In addition, one limitation is

that the network will grow indefinitely and eventually become too large to conduct

gradient descent. In the next section, we will design from first principles a novel

sequence modeling architecture that injects online (or continual) learning into its

architecture design, such that once the model is trained, it has already learned to

update itself on the fly.
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Chapter 6: Longhorn: State Space Models are

Amortized Online Learners

This chapter continues the discussion from Firefly on enabling neural networks

to become continual learners. Rather than expanding the architecture, we adopt

a different perspective: finding a way for neural networks to learn to modify their

parameters on the fly. Specifically, we focus on the sequence modeling task—the

problem of predicting consecutive data points in a sequence—which includes natural

language modeling. The majority of current deep sequence models are built upon the

Transformer architecture (Vaswani et al., 2017). The Transformer demonstrates strong

sequence modeling ability because it allows a token at any position to directly attend

to any tokens before it. This contrasts with conventional recurrent neural networks like

the Long Short-Term Memory (Hochreiter and Schmidhuber, 1997a), where learning

long-distance dependencies is challenging. However, due to its design, the Transformer

model suffers from quadratic computational cost and, in principle, cannot be extended

to infinitely long sequences. This limitation prevents the Transformer architecture

from being the ideal neural architecture that performs continual learning.

As a result, in this work, we seek a novel sequence modeling architecture that

can, on one hand, match Transformer’s performance in terms of modeling sequences,

and on the other hand, process sequences of indefinite length. Prior research has

suggested that the power of the Transformer might stem from the self-attention layer

acting as a strong memory system for associative recall—the task of retrieving values

when given the corresponding keys after observing a sequence of key-value pairs. Given

this, the central idea of this work is to view the recurrent update of a recurrent neural

network as a per-step solution to the online associative recall objective. By doing

so, the model is designed to conduct associative recall effectively while remaining

recurrent, thus enjoying constant memory usage and the ability to process sequences

indefinitely. In other words, during deployment, when the model observes new input,
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it continues performing online associative recall by design and therefore can potentially

incorporate new knowledge on the fly.

In the following sections, we will first introduce the motivation for finding

a better sequence modeling architecture than the Transformer model (Section 6.1).

Then, we will discuss the background on modern recurrent networks and existing

attempts towards finding such an architecture (Section 6.2). After that, we will

introduce the main idea of viewing recurrence as solving online learning and present

our design of the sequence model (Section 6.3).

6.1 Motivation

The Transformer model has become a standard for deep learning applications

in sequence modeling. However, Its applicability is limited by the quadratic growth in

computational costs as sequence length increases. Despite various optimizations such

as efficient decoding (e.g., Chen et al., 2023; Kuperman and Dyke, 2011), KV-cache

compression (e.g., Shao et al., 2024), and memory efficient implementation (e.g.,

Dao et al., 2022), it remains challenging to scale Transformers for autonomous and

continual use with an infinite (or very long) context window.

Linear attention models (Katharopoulos et al., 2020) reformulate the attention

mechanism to achieve O(n) complexity for long sequences. States Spaces Models

(SSMs) (Gu et al., 2021) are architectures that represent sequences using mathematical

state-space equations, enabling efficient computation of long-range dependencies

through compact memory states and recurrent updates. Recent advances in linear

attention models and SSMs have demonstrated the potential for efficient computing

outputs in parallel during training, thereby avoiding the inefficiencies of traditional

backpropagation. These specialized recurrent neural networks that employ a recurrent

form during inference, enabling linear decoding efficiency. Initially, these models

underperformed compared to Transformer. However, recent advancements in SSMs

(e.g., Gu and Dao, 2023) have achieved comparable performance in language modeling
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St = At � St�1 + Bt

Figure 6.1: (left) Most existing sequence models consist of channel and sequence
mixing layers. The sequence mixing layers can be viewed as “meta-modules” that
compress history into a state St, which is then passed to later layers for sequence
modeling. (middle) Sequence mixing can be seen as an online learning problem,
where the SSM state St optimizes an online objective. The recurrent update of
St is derived either by solving this objective in closed form or via a proximal
update. (right) Longhorn’s update solves online associative recall, where the
goal is to recover x ∈ Rd based on a hint k ∈ Rm from a state matrix S ∈ Rd×m.
Longhorn’s update corresponds to the implicit online learning solution, where
At = 1d×m − εt ⊗ k⊗2 and Bt = (ε⊙ xt)⊗ kt, and εt = βt/(1 + βtk

⊤
t kt). See the

details in Section 6.3 and Algorithm 7.

tasks. Initially, these models underperformed compared to Transformers. However,

recent SSMs (e.g., Gu and Dao, 2023; Yang et al., 2023; Peng et al., 2024; De et al.,

2024; Beck et al., 2024) have achieved performance parity with Transformers in

language modeling tasks. Despite extensive research into various design aspects of

SSMs, a guiding principle for designing SSMs remains elusive.

In this work, we propose a novel principle: SSMs can serve as meta modules

that compressing history online into memory states for sequence modeling tasks. An

online learning problem is defined as a scenario in which the model updates itself

incrementally as new data arrives, without revisiting past data, to adapt to dynamic

inputs. From this perspective:

The recurrent form of SSMs can be viewed as solving an online learning problem.

As a result, we can draw inspiration from online learning and con-

fine the design choices of SSMs to reflect those learning dynamics that

solve specific online prediction problems. Optimizing the appropriate objective
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enables models to achieve enhanced performance while minimizing computational

costs. Furthermore, this online learning perspective may offer deeper insights into the

function of SSM layers in large models. In particular, the recurrent update of an SSM

can be interpreted as a proximal update step or a closed-form solution to an online

learning objective. We outline the corresponding objectives for several existing SSMs

in Table 6.1. One significant advantage of viewing SSMs through the lens of online

learning is their ability to adapt post-training during deployment, allowing them to

process arbitrarily long data sequences at inference time.

Based on this insight, we propose a simple yet effective architecture (Longhorn),

derived from the implicit closed-form update of an online associative recall problem.

The closed-form update naturally leads to a stable recurrent form without a manually

designed gating mechanism, automatically balancing forgetting and learning. Thus

Longhorn does not need a separately parameterized forget gate, which saves parameters

when the state size is large. We demonstrate that Longhorn performs comparably to

or better than state-of-the-art SSMs like Mamba (Gu and Dao, 2023) on synthetic

and large-scale sequence modeling tasks. In particular, Longhorn outperforms Mamba

at the size of 1.3B-parameter when trained on 100B tokens from the SlimPajama

dataset (Soboleva et al., 2023). To summarize, our contributions are: 1) Theoretical

Framework: We propose a framework that views SSMs’ recurrent update as solving

online learning objectives. As a result, the design of SSMs reduces to the design

of the online learning objectives. In particular, we introduce a novel, simple, and

effective SSM, named Longhorn, that explicitly solves an online associative recall

problem. Longhorn’s recurrent update is obtained by the closed-form solution to

the online learning objective. Consequently, Longhorn does not require a separately

parameterized forget gate that appears in most existing SSMs.

2) Empirical Results: Longhorn demonstrates better performance than

existing SSMs including Mamba, across both synthetic associative recall tasks and the

large-scale language modeling task. Moreover, it achieves 1.8x improvement in sample

efficiency compared to Mamba (See Figure 6.5 (left)). Longhorn’s training speed is
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as fast as Mamba, as we only replace the SSM module in the Mamba architecture

with Longhorn’s recurrence. So it serves as a drop-in replacement for Mamba. Lastly,

Longhorn, trained with 2048 context length can extrapolate to 32K context length at

inference time without much perplexity drop (See Figure 6.5 (right)).

Notation Throughout this work, we use ⊙ to denote the Hadamard (elementwise)

product, and ⊗ to denote the Kronecker (or outer) product between two tensors.

Uppercase letters A,B, etc. denote matrices, while lowercase k, v are in general vectors.

∥·∥ by default refers to the ℓ2 norm for vectors.

6.2 Background on State Space Models

In this section, we provide a brief introduction to contemporary deep state

space models (deep SSMs).

Modern large language models are sequence-to-sequence models consisting of

a stack of layers y = ΦL ◦ · · · ◦ Φ1(x) that sequentially processes an input sequence

x = {xt}Tt=1, where T is the context length. Specifically, transformers consist of

alternative stacks of self-attention (SA) and multi-layer perceptron (MLP) layers

that conduct mixing (i.e., information aggregation) on the sequence and channel

dimensions, respectively.

State-Space Models (SSMs) represent an emerging paradigm in sequence mod-

eling, offering an alternative to traditional SA mechanisms, such as those used in

Transformers. In deep SSM-based architectures, the SA layers are replaced by spe-

cialized SSM layers designed to process sequence data efficiently. While some SSM

variants retain the multilayer perceptron (MLP) layers for channel-wise mixing (e.g.

Sun et al., 2023; Yang et al., 2023; De et al., 2024), others integrate SSM layers and

MLP layers into unified computational blocks (e.g. Gu and Dao, 2023).

A notable example of the latter is the Mamba model, which consists of a

stack of homogeneous computational units called Mamba blocks. Each Mamba block
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combines two key components:

• An SSM block: This block handles sequence mixing by modeling temporal

dependencies and state transitions. It efficiently encodes sequence information

through mechanisms that reduce computational complexity compared to SA

layers.

• An MLP block: This block performs channel-wise mixing, ensuring interactions

between features within each time step.

A single Mamba block combines the SSM block for sequence-level operations

(highlighted in red in Figure 6.2) and the MLP block for channel-level operations

(highlighted in blue).

SSM: General Form The SSM block (in red) plays the crucial role on information

aggregation in sequence dimension. It works by iteratively updating a memory state

matrix St ∈ Rd×m with a linear recurrence:

St = A(xt) ∗ St−1 + B(xt), ∀t ∈ {1, . . . , T}, S0 = 0, (6.1)

where xt is the input at time t, St is the model’s state, At, Bt : Rd → Rd×m are some

functions and ∗ is a multiplication operation of choice, such as Hadamard product or

matrix product. In practice, to make the linear dynamical system in (6.1) stable, A(xt)

are often restricted to matrices whose eigenvalues are between [−1, 1]. Therefore, the

A matrix is often referred to as the forgetting gate, because it removes/decays the

information stored in S.

Given the state St, SSMs often give the output token at the next layer via a

gated linear unit (GLU) (Dauphin et al., 2017):

yt = Readout(St, xt) = W1

(
ot ⊙ σ(W2xt)

)
, ot = C(xt)St,

125



Conv

SSM
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Figure 6.2: Mamba Block

where we first get ot via a state-dependent linear projection on St, which is then fed

into a subsequent channel mixing gated linear unit (blue in Figure 6.2), where σ(·) is

a non-linear activation function.

A key feature of this design in (6.1) is that the update of St is a linear recurrence

relation. That is, St is a linear function of St−1. Crucially, this allows us to express

all St in an explicit form that can be calculated in parallel: when all x = {xt}t are

available as in the training phase, {St}t can be written into

St =
∑
t′≤t

(Āt′→t)B(xt′), where Āt′→t =
∏

t′<τ≤t

A(xτ ). (6.2)

Here
∏

denotes the product induced by multiplication operator ∗. The resulting

cumulative product Āt′→t can be implemented efficiently in parallel with the prefix

scan algorithm (Harris et al., 2007), which only requires a sublinear complexity in

terms of sequence length (e.g., O(log t)). From now on, we will abbreviate A(xt) and

B(xt) as At and Bt, respectively.

Designs of (At, Bt, ∗) Existing variants of SSMs mainly differ in the design choices

of the networks At, Bt, and the associated operator ∗ in the linear recurrence. A core

issue here is that the memory state St ∈ Rd×m, designed to be m times the input xt in

size, must be as large as possible to maintain sufficient information during recurrence.

This makes the architecture design of At, Bt, both mapping Rd to Rd×m challenging.
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A naive linear lay would result in d× d×m weights, which is prohibitively large. This

makes it necessary to impose certain low-dimensional structures in At, Bt, which is

what differentiates the existing designs of SSMs. Next, we provide some examples in

the form of (6.1) of some existing SSM models.

Example 6.2.1 (Linear Attention Variants). Linear Attention (LA) (Katharopoulos

et al., 2020), Retention Network (RetNet) (Sun et al., 2023), and Gated Linear

Attention (GLA) (Yang et al., 2023) all assume At, Bt yield rank-1 (or even constant)

outputs:

St = At ⊙ St−1 + v(xt)⊗ k(xt), with


At = 1 (LA)

At = c ∈ [0, 1] (RetNet)

At = 1⊗ α(xt) (GLA)

,

where St ∈ Rd×m, v(xt) ∈ Rd, k(xt) ∈ Rm are linear mappings of xt, and ⊗ denote

the outer product. In practice, one can use h heads as in the multi-head attention

to save some computation, where the m and d dimensions are divided into h groups

and each group performs its own LA variant. The outer product complexity reduces to

O(h ∗m/h ∗ d/h = md/h). But then the effective size of St also shrinks to md/h.

Example 6.2.2 (Mamba (Gu and Dao, 2023)). The Mamba architecture is derived

by discretizing a continuous linear dynamics. Its discretized update is:

St = At ⊙ St−1 + Bt, where

At = exp(A⊙ (ε(xt)⊗ 1)), Bt = (ε(xt)⊙ xt)⊗ k(xt).
(6.3)

where St ∈ Rd×m with m = 16 by default, ε(xt) ∈ Rd, k(xt) ∈ Rm linear mappings of

xt, and A ∈ Rd×m is a data independent (not depending on xt trainable weight matrix.

In Mamba, both At and Bt depend on ε(xt), which represents the step size for

the SSM update.

In practice, Mamba does not use multiple heads as in linear attention variants.

Perhaps the main reason is that given a fixed m and d, the largest memory state will
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be with h = 1 (as the effective size of St is md/h). In addition, Mamba’s output is

ot = C(xt)St + Dt ⊙ xt, which has an additional residual part Dt ⊙ xt.

Example 6.2.3 (Griffin (De et al., 2024)). In Mamba and the linear attention variants,

the outer product serves as a critical role in lifting vectors to matrices. The recent

Griffin architecture abandons the outer product and performs pure elementwise product:

st = a(xt)⊙ st−1 +
√

1− a(xt)⊙ i(xt)⊙ xt,

where st, a(xt), i(xt) are all Rd. This yields smaller memory states, but in practice,

Griffin is combined with local attention (i.e., the sliding-window self-attention) to

strengthen its capability.

Example 6.2.4 (RWKV (Peng et al., 2023)). The original RWKV also performs

elementwise recurrence. It maintains a state of ratio form st = ut/zt, where ut, zt are

updated separately by two SSMs:

st = ut/zt

ut = exp(−w) · ut−1 + exp(k(xt))⊙ v(xt), zt = exp(−w) · zt−1 + exp(k(xt)),

where all the vectors are of size Rd, and w > 0 is a trainable weight for controlling

the forgetting. In the most recent RWKV version (Peng et al., 2024), the denominator

zt is removed, and the elementwise product is replaced with the outer product, which

makes it more similar to an LA variant.

Example 6.2.5 (HGRN2 (Qin et al., 2024a)). The Gated Linear RNNs with State

Expansion (HGRN2) model is represented with the following recurrence:

St = (1⊗ f(xt))⊙ St−1 + i(xt)⊗ (1− f(xt)).

Here, f(xt) ∈ [0, 1] is the forget gate, (1 − f(xt)) is the input gate, and i(xt) is the

input vector. HGRN2 thus resembles an RNN.
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Algorithm 7 Longhorn’s Single-layer SSM Recurrence (Inference Time)

1: Parameters: Wq ∈ Rm×d,Wk ∈ Rm×d,Wβ ∈ Rd×d, where Wβ can be low-rank,
horizon T .

2: Initialize the memory state S0 ← 0d×m.
3: for t ∈ {1, . . . , T} do
4: 1) Receive input xt ∈ Rd.
5: 2) Compute the query qt, key kt and βt (as in objective ||s− st−1||2 +βt||s⊤kt−

xt||2):

qt = Wqxt ∈ Rm, kt = Wkxt ∈ Rm, βt = Sigmoid(Wβxt) ∈ (0, 1)d.

6: 3) Update the memory state St ∈ Rd×m via

St =
(
1−∆t ⊗ k⊙2

t

)
⊙ St−1 +

(
∆t ⊙ xt

)
⊗ kt,

where ∆t is the step size:

∆t = βt/(1 + βtk
⊤
t kt) ∈ (0, 1)d.

7: 4) Compute the output ot = Stqt ∈ Rd.
8: end for
9: Note: ⊙ elementwise product and⊗ is outer product. xt in practice is preprocessed

through a linear projection followed by a Conv1d operation as in Mamba (Gu and
Dao, 2023).

6.3 Recurrence as Solving Online Learning

As demonstrated in the previous section, designing a state-space model (SSM)

depends on the specific selection of (At, Bt, ∗), which is intricate and somewhat

artisanal. In this section, we propose to streamline SSM design through an online

learning perspective. The main idea is to treat the SSM layers as learning modules that

learn to compress information along the sequence dimension. From this perspective,

the SSM layers are learning to learn, such that during the inference time, these layers

are still learning (compressing) new information online.

We begin with an overview of online learning and subsequently demonstrate how
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SSM can be framed as an online learning problem. Finally, we present a straightforward

architecture based on the closed-form solution of the implicit online learning algorithm.

6.3.1 SSM as Online Learning

We propose interpreting the recurrence of SSMs as a solution to an online

learning problem. In this context, we use state st represents the internal representation

maintained by the model at time step t. At each step t, the model receives new data

and then incurs a loss ℓt(st). The objective is to minimize the cumulative loss over

time:

min
{st}

∑
t

ℓt(st). (6.4)

For instance, in the case of online linear prediction, the model receives an input-label

pair (xt, yt) at each step. The state st in this case represents the weights of the linear

predictor. The prediction is given by stxt and the loss function is defined as:

ℓt(st) =
1

2
||s⊤t xt − yt||2, (6.5)

where yt is the true label. The problem then becomes one of iteratively updating st

to minimize the prediction error. Crucially, the state st hanges dynamically as the

model encounters new data, allowing it to adapt its predictions in real time.

Online convex programming (OCP) (e.g., Zinkevich, 2003) yields a principled

approach to solving Equation 6.4 when ℓt are convex, by trading-off the “stability” and

“plasticity” (e.g., Mermillod et al., 2013). Formally, an online convex programming

algorithm updates st by solving a regularized cost function:

st = arg min
s

Lt(s), Lt(s) = Dϕ(s, st−1)︸ ︷︷ ︸
stability

+ βtℓt(s)︸ ︷︷ ︸
plasticity

, (6.6)

where βt ∈ R+ and Dϕ is a discrepancy measure, often a Bregman divergence induced

by the convex function ϕ (e.g., when ϕ(x) = 1
2
∥x∥2, Dϕ(s, st−1) = 1

2
||s− st−1||2). Here

the first term ensures the updated s will be close to the previous st−1, so the agent
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Method Online Learning Objective Lt(s) (assume xt ∈ R) Online Update

LA ∥S − St−1∥2F − 2⟨Skt, xt⟩ St = St−1 + xt ⊗ kt

RetNet γ∥S − St−1∥2 + (1− γ)∥S∥2F − 2⟨Skt, xt⟩ St = γSt−1 + xt ⊗ kt

GLA ∥S − St−1diag(αt)∥2F + 2⟨Skt, xt⟩ St = St−1diag(αt) + xt ⊗ kt

Griffin
∥∥√αt ⊙ (s− st−1)

∥∥2 +
∥∥√1− αt ⊙ s

∥∥2 − 2
√

1− αt ⊙ s⊙ it ⊙ xt st = αt ⊙ st−1 +
√

(1− αt)⊙ it ⊙ xt

Longhorn ∥S − St−1∥2F + ∥Skt − xt∥2diag(βt)

St = (1m×n − εt ⊗ k⊙2
t )⊙ St−1+

(εt ⊙ xt)⊗ kt, εt = βt/(1 + βtk
⊤
t kt)

Table 6.1: Some of the existing SSMs and their corresponding online learning
objectives/updates.

suffers less from catastrophic forgetting, while the second term ensures the agent is

incorporating new knowledge from minimizing the new loss ℓt(s). Hence, βt controls

the trade-off between stability and plasticity.

6.3.2 The Longhorn Architecture

Under the online learning framework, the design of an SSM reduces to

the design of Dϕ and ℓt in Equation 6.6. This provides a unified framework for the

existing SSM variants. We summarize in Table 6.1 the online learning interpretation

of several existing SSM architectures.

In this work, we explore a highly simplified and natural design called Longhorn

guided by the online principle (see the last row of Table 6.1). In particular, we consider

{(kt, xt)}t as the input stream, where kt ∈ Rm and xt ∈ Rd are the key-value pairs,

just as in the Transformer model (Vaswani et al., 2017). In practice, as in Mamba (Gu

and Dao, 2023), kt = Wkxt ∈ Rm, where Wk ∈ Rm×d, is a linear mapping from xt.

We want to recurrently update hidden states {St}t, where St ∈ Rd×m is a

matrix that summarizes the information up to time t. We posit the following OCP

objective for updating St:

St = arg min
S∈Rd×m

{
||S − St−1||2F + ||Skt − xt||2diag(βt)

}
. (6.7)

Here, || · ||F denotes the Frobenius norm of a matrix, βt ∈ Rd is a vector controlling
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how much new information about xt we want the model to incorporate for St. For

instance, βt,i = 0 implies St,i = St−1,i (i.e., the i-th row of S remains unchanged),

while a large βt,i implies the model empties some part of Si for incorporating xt,i.

From a high-level perspective, Equation 6.7 is solving an online prediction

problem of learning a weight matrix S to predict xt given kt with a linear model

xt ≈ S⊤kt. It is a supervised formulation of the associative memory problem of

memorize (kt, xt) pairs by learning a mapping from kt to xt, such that given a key

(input) kt the model can retrieve (predict) its corresponding value (label) xt.

The objective in Equation 6.7 is motivated by the observation that the self-

attention layer of the Transformer exhibits a form of online associative recall (often

referred to as the induction head property) (Olsson et al., 2022). This capability has

been shown to underpin the model’s ability to perform in-context learning (Brown,

2020). To explain the connection, in-context learning refers to the model’s ability,

during inference, to generalize from a set of provided (k, x) (question-answer) pairs

and apply this understanding to a new question. This closely parallels associative

recall, where the model retrieves relevant information from past interactions to address

new inputs.

Fortunately, this simple objective gives a closed-form solution for St, which

coincides with the implicit online learning method (e.g., Kulis and Bartlett, 2010),

according to Theorem 6.3.1.

Theorem 6.3.1. The closed form solution for St for objective in Equation 6.7 is

St,i = (I − εt,iktk
⊤
t )St−1,i + εt,iktxt,i, where εt,i =

βt,i

1 + βt,ik⊤
t kt
∈ [0,∞). (6.8)

Proof. As the objective in (6.7) is in a quadratic form with respect to s, there is

a unique minimum. Observe that each row of S (e.g., Si) optimizes the objective
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independently, therefore we can solve the solution row-wise. By setting the derivative

of ∇Si
Lt = 0, we have:

∇Si
Lt = 0⇐⇒ (Si − St−1,i) + βt,i(S

⊤
i kt − xt,i)kt = 0

⇐⇒ (I + βt,iktk
⊤
t )Si = St−1,i + βt,iktxt,i

⇐⇒︸︷︷︸
(3)

Si =

(
I − βt,i

1 + βt,ik⊤
t kt

ktk
⊤
t

)
St−1,i +

(
I − βt,i

I + βt,ik⊤
t kt

ktk
⊤
t

)
βt,iktxt,i

⇐⇒
(
I − βt,i

I + βt,ik⊤
t kt

ktk
⊤
t

)
St−1,i +

(I + βt,ik
⊤
t kt − βt,iktk

⊤
t )βt,iktxt,i

I + βt,ik⊤
t kt

⇐⇒︸︷︷︸
(5)

(
I − βt,i

I + βt,ik⊤
t kt

ktk
⊤
t

)
St−1,i +

βt,iktxt,i

I + βt,ik⊤
t kt

(3) is derived from the fact that (I + βt,iktk
⊤
t )−1 = (I − βt,iktk

⊤
t

1+βt,ik⊤t kt
) by the Sher-

man–Morrison formula. (5) is derived by noticing that k⊤
t ktktxt,i− ktk

⊤
t ktxt,i = 0.

Here, St,i refers to the i-th row of St, βt,i refers to the i-th element of βt. As

ktk
⊤
t is a matrix, it is hard to compute its cumulative product for conducting a parallel

scan. As a result, in practice, we use the diagonal approximation 1m − εt,ik
⊙2
t in

place of I − εt,iktk
⊤
t , where a⊙2 = a⊙ a and 1m is the m-dimensional all-one vector.

Following Mamba (Gu and Dao, 2023) and Transformer (Vaswani et al., 2017), we

make kt = Wkxt ∈ Rm and βt = σ(Wβxt) ∈ Rd (both are functions of xt), where the

activation σ (the Sigmoid function) is to ensure that βt is positive and bounded. In

summary, the final Longhorn update of St becomes:

St = At ⊙ St−1 + Bt, where At = (1d×m − εt ⊗ k⊙2
t ), Bt = (εt ⊙ xt)⊗ kt. (6.9)

Here, k⊙2 = k ⊙ k. The final architecture of Longhorn follows Mamba strictly

(Figure 6.2), except that we replace the SSM block with Longhorn’s recurrence. We

also provide an efficient CUDA kernel for it. The full inference-time algorithm is

provided in Algorithm 7. One can compare Equation 6.9 to Equation 6.3 and other

SSMs in Section 6.2. Longhorn does not introduce an extra “forgetting” gate (hence

it has fewer parameters), because the forgetting gate is naturally derived from the key

vector, i.e., (1d×m − εt ⊗ k⊙2
t ).
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Advantages of Longhorn

1. While we can derive the learning objective for some of the existing SSMs,

Longhorn explicitly designed from the ground up to address online regression

tasks. This design prioritizes real-time adaptability and efficient parameter

updates, setting it apart from previous SSMs that primarily focus on sequence

modeling without explicitly targeting regression objectives.

2. Longhorn does not require a specific forget gate (e.g., αt in GLA or A matrix

in Mamba). The forgetting is naturally linked to the key vector kt through

the derivation. This saves about O(d×m) parameters per SSM module, where

m is the dimension of kt, and d is the dimension of xt. However, Longhorn

demonstrates better performance even with fewer parameters than Mamba (See

Figure 6.5 (left), Table 6.4, Table 6.5).

3. The closed-form solution in Equation 6.8 does not need any specific initial-

ization. In contrast, Mamba requires a special careful initialization of the A

and εt.

4. Unlike DeltaNet (Yang et al., 2024a), which struggles to extrapolate beyond

training contexts, Longhorn successfully extrapolates to contexts 16x longer

than it was trained for (Figure 6.5 (right)).

6.4 Empirical Results

We validate Longhorn’s performance through the following experiments:

1) We compare Longhorn against other SSMs on the multi-query associative recall

benchmark (Arora et al., 2023a) and find that Longhorn is the only model to

achieve near-perfect recall at sequence lengths up to 512 with a hidden

dimension of 64. We further compare Longhorn (1B) against Mamba (1B) on
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real-world recall-intensive tasks (Arora et al., 2024a,c) and find that Longhorn also

achieves a better recall rate compared against Mamba.

2) Using the OpenWebText dataset (Gokaslan and Cohen, 2019), we assess Longhorn’s

performance on language modeling with model sizes of 120M and 350M, and context

lengths of 1024 or 4096, showing it consistently outperforms other SSMs in

validation perplexity.

3) We train a 1.3B language model on the SlimPajama dataset (Soboleva et al., 2023)

with 100B tokens and compare its performance across 8 benchmarks, where Longhorn

achieves better final performance and >1.8x better sample efficiency than

Mamba and GLA.

4) We additional apply Longhorn to vision domain and compare it against the

Vision Mamba (ViM) (Zhu et al.) model, where Longhorn achieves performance

comparable (slightly superior) to that of the ViM model.

6.4.1 Multi-Query Associative Recall

We first consider the synthetic benchmark Multi-Query Associative Recall

(MQAR) (Arora et al., 2023a). The agent observes a sequence of tokens {k1, v1, k2, v2,
. . . , kT , vT}, where each consecutive two-tokens become a key-value pair. At test

time, the agent is provided with multiple k ∼ {k1, . . . kT}, the goal is to retrieve the

corresponding values. Following the original benchmark, we consider the sequence

length T ∈ {64, 128, 256, 512} and model dimension (size of the latent embedding of a

token) d ∈ {64, 128, 256, 512}. We compare against 1) Transformer model (Attention),

2) Based architecture, which combines an SSM with local-attention, where the SSM is

derived from the Taylor approximation of the self-attention (Arora et al., 2024b), 3)

Hyena (Poli et al., 2023), which is a special SSM that adopts long convolution via fast

fourier transform, 4) RWKV (Peng et al., 2023), which can be viewed as the division of

two SSMs (i.e., y = a/b, where a, b are outputs from two SSMs). The state-transition

matrix is a scalar, 5) BaseConv (Arora et al., 2023a), an SSM that combines linear
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projection with convolution, and 6) Mamba (Gu and Dao, 2023), the state-of-the-art

SSM that has data-dependent A and B (See (6.3)). Each experiment individually

searches for the best learning rate from {10−4, 4.6× 10−4, 2.2× 10−3, 10−2}. Results

are summarized in Figure 6.3.

Figure 6.3: Comparison of Longhorn to state-of-the-art SSMs on the MQAR
benchmark. y-axis is the recall rate.

Observation: From the figure, we can see that Longhorn, which is designed

to perform the associative recall task by solving the online prediction objective,

outperforms existing SSM variants even at the sequence length of 512 and a small

model dimension of 64.

6.5 Real-world Recall Intensitive Task

To further evaluate Longhorn’s ability to recall in long real-world sequences,

following the experiment setup in Arora et al. (2024c), we consider the following six

recall-intensive tasks: information extraction tasks like FDA and SWDE (Arora et al.,

2024a, 2023b; Wu et al., 2021; Deng et al., 2022), and question-answering benchmarks

like Squad (Rajpurkar et al., 2018), NaturalQuestion (NQ) (Kwiatkowski et al., 2019),

TriviaQA (Joshi et al., 2017), and DROP (Dua et al., 2019). Following Arora et al.

(2024c), we report both the vanilla question answering accuracy, and the accurayc

under the JRT-Prompt format (Arora et al., 2024c), where the context is repeated

twice before the model conducts the final completion. The zero-shot prompt includes
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up to 1k tokens in the input and JRT-Prompt includes up to 2k tokens in the input

for all tasks, as it repeats the context twice. The 1B checkpoint of Longhorn is taken

from Section 6.5.2. The results are provided in the following table:

Model FDA SWDE Squad NQ TriviaQA DROP Average

Mamba-1.3B 33.2 / 40.6 35.0 / 36.2 26.6 / 32.6 37.4 / 52.7 56.3 / 56.9 20.4 / 31.5 34.8 / 41.8
Longhorn-1.3B 40.2 / 50.4 33.2 / 42.3 27.6 / 33.2 35.0 / 55.0 58.5 / 55.9 21.3 / 33.3 36.0 / 45.0

Table 6.2: Longhorn and Mamba’s recall performance across six real-world recall-
intensive benchmarks.

Observation: From the table, it shows that Longhorn 1.3B achieves a 3.4%/7.7% im-

provement of recall accuracy under the vanilla/JRT-Prompt context format, compared

against the same size Mamba.

6.5.1 Scaling Law on OpenWebText

In this section, we consider language modeling tasks on models with 120M or

350M parameters with 1024 or 4096 context length. We choose the OpenWebText

dataset as it is small and serves as an easily accessible benchmark for quick bench-

marks.1 The details about the architecture is provided in Table 6.3. The architecture

configs follow exactly from the Mamba paper (Gu and Dao, 2023).

Params n layers d model n heads / d head Training steps Learning Rate Batch Size Tokens

125M 12 768 12 / 64 4800 6e-4 0.5M tokens 2.5B
350M 24 1024 16 / 64 13500 3e-4 0.5M tokens 7B

Table 6.3: Training details on OpenWebText.

We consider the following baseline models: LLaMA (Touvron et al., 2023),

RetNet (Sun et al., 2023), Mamba (Gu and Dao, 2023), RWKV (Peng et al., 2023),

and GLA (Yang et al., 2023). Then we experiment with 1024 or 4096 context length

1We adapted code from the nanoGPT repository https://github.com/karpathy/nanoGPT, which
is a minimal reproduction of GPT-2 model using PyTorch.
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Figure 6.4: Scaling law with 1024 and 4096 context length on OpenWebText with
various SSM models and the LLaMA (strong Transformer) baseline.

T and model sizes around 120M or 350M. Results are summarized in Table 6.4 and

Figure 6.4.

Model # Param. (M)
Val. Loss (↓)

# Param. (M)
Val. Loss (↓)

T = 1024 T = 4096 T = 1024 T = 4096

RetNet 129.1 3.569 3.492 373.2 3.362 3.227
GLA 123.8 3.381 3.364 361.1 3.018 3.001
RWKV 124.4 3.291 3.276 354.8 2.983 2.931
Mamba 129.2 3.238 3.231 371.5 2.902 2.868
LLaMA 124.4 3.247 3.273 357.7 2.891 2.883

Longhorn 128.6 3.225 3.192 369.8 2.888 2.859

Table 6.4: Language modeling scaling law against LLaMA (Touvron et al., 2023),
RetNet (Sun et al., 2023), RWKV (Peng et al., 2023), and Mamba (Gu and Dao,
2023). All models are trained on the OpenWebText dataset (Gokaslan and Cohen,
2019). Models vary from 120-350M parameters and 1024-4096 context length.

Observation: From the figure and table, we can see that Longhorn consistently

outperforms baseline SSMs up to 350M and 4096 context length.

6.5.2 Large-scale Language Modeling

For the large-scale language modeling task, we followed the GLA (Yang et al.,

2023) setup, training a 1.3B parameter model on the SlimPajama (Soboleva et al.,

2023) dataset with 100B tokens and a batch size of 2M. We used the AdamW
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optimizer (Loshchilov and Hutter, 2017) with a weight decay of 0.01, cosine learning

rate decay (peak: 3e− 4, final: 3e− 5), and gradient clipping of 1.0. Comparisons

were made against LLaMA, Mamba, and GLA models (context size: 2048). We

evaluated on eight standard downstream tasks, including PIQA (Bisk et al., 2020),

HellaSwag (Hella) (Zellers et al., 2019), WinoGrande (Wino) (Sakaguchi et al., 2021),

ARC-easy (ARC-e) and ARC-challenge (ARC-c) (Clark et al., 2018), OpenBookQA

(OBQA) (Mihaylov et al., 2018), Social Interaction QA (SIQA) (Sap et al., 2019),

and Boolean questions (BoolQ) (Clark et al., 2019). We report the average perplexity

across the above eight datasets throughout training in Figure 6.5 (left). Then we

summarize the downstream evaluation results in Table 6.5.

Model State Size
PIQA Hella Wino. ARC-e ARC-c OBQA SIQA BoolQ

Avg.
acc ↑ acc norm ↑ acc ↑ acc ↑ acc norm ↑ acc ↑ acc norm ↑ acc ↑

LLaMA 8M 55.08 55.36 71.73 59.26 32.19 43.35 45.16 62.13 53.03

GLA 512K 55.55 49.10 71.12 58.86 28.11 41.67 44.91 59.21 51.07
Mamba 64K 54.21 53.61 71.67 61.05 30.15 43.94 44.18 59.22 52.25

Longhorn 64K 55.78 52.30 71.00 60.63 29.53 43.55 44.68 61.29 52.35

Table 6.5: Language modeling results against LLaMA (Touvron et al., 2023),
RetNet (Sun et al., 2023), and Mamba (Gu and Dao, 2023). All models are trained
on the same subset of the SlimPajama dataset with the Mistral tokenizer. The
340M/1.3B models are trained for 15B/100B tokens respectively. State Size
is the effective state size of an SSM per layer. For instance, GLA’s state size
(1024K) is computed by md/h, where the key and value dimensions are m = 1024
and d = 2048, and there are 4 heads h = 4. The individual task performance is
via zero-shot. The last column shows the average value over the results on all
benchmarks.

Observation: From Figure 6.5 (left), it is evident that Longhorn not only achieves

a lower average perplexity but also improves sampling efficiency by 1.8x compared to

Mamba. In other words, Longhorn reaches the same average perplexity with nearly

half the training data required by Mamba. From Table 6.5, we can see that up to a

1.3B model, Longhorn remains strong among all baseline models and achieves slightly

better results than Mamba, even though it has a bit fewer parameters.
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6.5.3 Ablation on Length Extrapolation

We evaluate how Longhorn extrapolates to a context length longer than 2048

(training context length) at inference time. In particular, we pick a disjoint validation

set from SlimPajama dataset, rearrange it into batches of sequences of length T ∈
{2048, 4096, 8192, 16384, 32768}, and then evaluate the pretrained model’s perplexity

on those sequences. The results are summarized in Figure 6.5 (right).

1.8x speed up

Figure 6.5: (left) The average perplexity on eight downstream datasets
for GLA, Mamba, and Longhorn (1.3B model) over seen tokens on SlimPa-
jama. Longhorn leads to a 1.8x speed up in sampling efficiency. (right)
Longhorn, pretrained with 2048 context length, extrapolates up to 16x
longer context at inference.

Observation: From the figure, we observe that Longhorn successfully extrapolates

to contexts up to 16x longer than those used during training, this contrasts with

DeltaNet (Yang et al., 2024a), which highlights a limitation in that the model cannot

extrapolate to longer contexts. In contrast, LLaMA, as a Transformer-based model,

fails to extrapolate beyond its training context length.

6.5.4 Vision State Space Models

In addition to language tasks, recent works have also applied States Spaces

Models to the vision domain, leveraging their superior training efficiency. In particular,

following the Vision Mamba (ViM) (Zhu et al.), we conduct experiments on the

ImageNet (Deng et al., 2009) classification task. Similar to ViM, We apply a bi-
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directional scan with Longhorn SSM (ViL) and compare the results with ViM on both

the tiny and small configurations described in the ViM paper.

Model # Param Top-1 Accuracy

ViM-Tiny 7M 76.1
ViL-Tiny (ours) 7M 76.4

ViM-Small 26M 80.5
ViL-Small (ours) 26M 80.7

Table 6.6: Top-1 Accuracy on ImageNet for Vision Mamba (ViM) and Vision
Longhorn (ViL).

Observation: The results from Table 6.6 demonstrate that the Vision Longhorn

model (ViL) achieves comparable (slightly better) performance to the original ViM.

Note that we use the best hyperparameters for ViM without additional tuning, and

ViL does not require two additional parameters for the forward and backward A

matrices, as they are computed directly based on the key k vector.

6.6 Related Work

This section provides an overview of recent research efforts aimed at finding

alternative sequence modeling architectures to the Transformer model. In particular,

we focus on linear attention models, state space models, and their variants. Addition-

ally, we discuss prior works on the fast-weight programmer—a variant of the linear

attention model—which uses a network with slow weights to predict the weights of

another network (called fast weights), allowing the model to essentially learn to modify

itself on the fly.

Linear Attention Models Several methods have been developed to address the

quadratic complexity of the Transformer by making attention linear with respect

to context length. In particular, Linformer uses a low-rank approximation of the
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self-attention by projecting the keys and values into a constant size matrix, instead

of scaling with the sequence length (Wang et al., 2020). Realizing that the main

bottleneck causing the quadratic cost in Transformers is the Softmax function, the

Linear Transformer replaces the Softmax function with a decomposable similarity

function analogous to kernel methods, thereby making the computation linear with

respect to sequence length (Katharopoulos et al., 2020). The Performer approximates

the softmax attention using positive orthogonal random features (Choromanski et al.,

2020). More recently, based on the Linear Transformer, the Retentive Network

(RetNet) adds additional constant forgetting and rotation (Sun et al., 2023). Gated

Linear Attention (GLA) further experiments with learnable forget gates (Yang et al.,

2023). Notably, linear attention can be viewed as a fast weight network where a slow

net (the model’s parameters) learns to program a changing fast network (e.g., a linear

predictor) by adapting its parameters (e.g., the st) online using inputs (Schlag et al.,

2021).

State Space Models Instead of trying to linearize transformers, States Spaces

Models (SSMs) start with parallelizable linear recurrent networks directly. Initially,

the state transition matrix A is assumed to be constant so that the recurrence can be

computed in parallel using a convolution (Li et al., 2022; Gu et al., 2021). Subsequent

developments include the Diagonal State Space (DSS) model (Gupta et al., 2022),

Gated State Space (GSS) models (Mehta et al., 2022), S5 model (Smith et al., 2022),

Bidirectional Gated SSM (BiGS)(Wang et al., 2022), H3 model(Fu et al., 2022), and

Mamba (Gu and Dao, 2023). In addition, there are also works directly trying to

make recurrent networks efficient, which often results in a particular form of SSM

as well. This includes Deep Linear Recurrent Units (LRUs)(Orvieto et al., 2023; De

et al., 2024), Hierarchically Gated Linear RNN (HGRN)(Qin et al., 2024b,a), and

RWKV (Peng et al., 2023, 2024).
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Fast Weight Programmer The concept of a network modifying its own weights

in response to inputs is not novel and has historical roots in the Fast-weight Program-

mer (Schmidhuber, 1992, 1993; Schlag and Schmidhuber, 2017; Schlag et al., 2021).

Specifically, these models propose updating a weight matrix W ∈ Rd×m using the outer

product of two vectors, expressed as ∆W = v(xt) ⊗ k(xt). This mechanism closely

aligns with the principles underlying the Linear Attention model. Our framework

builds upon the Fast Weight concept by tailoring the weight update process to address

a specific online learning objective, thereby extending its applicability and effectiveness

in dynamic learning environments.

6.7 Summary

This chapter introduces a novel approach to designing deep state space models

by conceptualizing the recurrence update as solving an online objective. We propose

a straightforward online regression objective, adopting its implicit closed-form update

to define our model, which we refer to as Longhorn. Notably, Longhorn is designed

to facilitate parallelism during training and inference, demonstrating competitive

performance in synthetic sequence modeling and language modeling tasks. For future

research, an intriguing avenue would be exploring other online learning objectives that

can be efficiently implemented on modern hardware. Additionally, while the current

implementation of Longhorn closely aligns with Mamba, Ren et al. (2024) suggests

that incorporating sliding-window attention with Mamba improves performance. We

anticipate similar benefits for Longhorn. This result represents the completion of

our efforts to design a recurrent state space model that explicitly conducts

online learning, even at inference time ((C3), Chapter 1.1).
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Chapter 7: Related Work

This chapter provides a comprehensive overview of advancements in the follow-

ing research topics: (1) multitask learning (with a focus on the optimization challenge),

(2) growing neural networks, (3) continual learning, and (4) efficient sequence modeling

architectures. These areas are foundational to the contributions of this dissertation,

addressing challenges in optimizing linear combinations of multiple loss functions,

enabling continual learning, and developing efficient sequence modeling.

7.1 Multitask Learning

Multitask learning (MTL) aims to enhance task performance by leveraging

shared representations across multiple tasks. In neural networks, this often involves

training a single model to optimize multiple task objectives simultaneously. MTL

approaches can be broadly categorized into task grouping, multitask architecture

design, and gradient manipulation methods that address the challenges of optimizing

a linear combination of task losses. As MTL naturally involves optimizing multiple

objectives, we also provide an overview of multiobjective learning literature. However,

we also emphasize that the focus of multiobjective learning is to find Pareto-optimal

solutions or explore the entire Pareto front, which differs from what we aim to address.

Task Grouping Task grouping focuses on clustering tasks into fewer groups, with

models learning from each cluster. Key research explores how grouping influences

positive knowledge transfer between tasks and identifying which tasks should be

grouped together (Thrun and O’Sullivan, 1996; Zamir et al., 2018; Standley et al.,

2020; Shen et al., 2021; Fifty et al., 2021).
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Multitask Neural Architectures Multitask learning architectures include hard-

parameter-sharing methods, where neural networks are divided into shared feature

extractors and task-specific modules using heuristics (Kokkinos, 2017; Long et al.,

2017; Bragman et al., 2019), and soft-parameter-sharing methods, which learn which

parameters should be shared across tasks (Misra et al., 2016; Ruder et al., 2019; Gao

et al., 2020; Liu et al., 2019b). More recently, neural architecture search has been

extended to MTL, learning where to branch networks into task-specific modules (Guo

et al., 2020; Bruggemann et al., 2020).

Gradient Manipulation Methods Gradient manipulation methods are specifically

designed to balance the losses of different tasks in multitask learning by adjusting

their gradients during optimization. These methods aim to steer the optimization

trajectory toward a more uniform decrease across all task losses, mitigating the issue

of conflicting gradients that can hinder performance.

Early methods such as GradNorm (Chen et al., 2018) dynamically reweight the

losses based on the norm of their gradients. Guo et al. adjust the objective weights

based on heuristic measurements of task difficulty (Guo et al., 2018). Kendall et al.

apply uncertainty estimation of each objective to determine linear weights to combine

different objectives. However, these methods often lack theoretical justification and

may not effectively address gradient conflicts (Kendall et al., 2018).

To directly address conflicting gradients, gradient manipulation techniques

create new update vectors through linear combinations of task gradients (Sener and

Koltun, 2018; Yu et al., 2020a; Liu et al., 2020; Chen et al., 2020; Javaloy and Valera,

2021; Liu et al., 2021; Navon et al., 2022; Liu et al., 2022; Zhu et al., 2023), enabling

explicit analysis of local improvements across tasks. The Multiple Gradient Descent

Algorithm (MGDA)(Sener and Koltun, 2018; Désidéri, 2012) aligns task gradients

to find updates that simultaneously improve all objectives. Similarly, Projecting

Conflicting Gradients (PCGrad)(Yu et al., 2020a) projects each gradient onto the

normal plane of others, mitigating conflicts without reducing optimization dynamics.
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These methods ensure convergence to Pareto-stationary points, where no single

objective can be improved without compromising others. However, Pareto-stationary

solutions often remain suboptimal, as the gradients may favor objectives unevenly.

Further innovations include stochastic methods like GradDrop (Chen et al., 2020),

which randomly excludes conflicting gradients to preserve optimization dynamics,

and IMTL-G (Liu et al., 2020), which seeks updates that balance the influence of

all objectives. Despite their theoretical rigor, these approaches often face practical

challenges, such as high computational overhead (Kurin et al., 2022).

Multiobjective Optimization Multiobjective optimization, introduced by Vilfredo

Pareto in 1896 (Pareto, 1906), provides a framework for addressing problems with

multiple conflicting objectives. Originating in economics and political science, it has

evolved into a significant area of research in optimization, offering tools for balancing

trade-offs in diverse domains.

Traditional approaches to multiobjective optimization include no-preference

methods, which aim to minimize the distance between the objective vector and a

predefined reference point (Fodor and Roubens, 1994; Miettinen, 1998), and a pri-

ori methods, which combine objectives into a weighted scalar function using linear

scalarization (Ishibuchi and Murata, 1998). While these methods incorporate prede-

fined preferences, they can be rigid in adapting to dynamic optimization landscapes.

Lexicographic prioritization approaches, such as the ϵ-constrained method, prioritize

objectives hierarchically, optimizing secondary objectives under constraints imposed

by primary ones (Miettinen, 1998), thus offering flexibility in addressing objective

hierarchies.

Other methods focus on exploring the entire Pareto front, allowing decision-

makers to select solutions based on their preferences (Das and Dennis, 1998; Motta

et al., 2012; Messac et al., 2003; Messac and Mattson, 2004; Mueller-Gritschneder et al.,

2009; Erfani and Utyuzhnikov, 2011). Interactive methods iteratively refine solutions
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by incorporating user feedback (Miettinen et al., 2008), making them adaptable to

complex problem settings.

In the context of multitask learning, multiobjective optimization techniques

such as the Multiple Gradient Descent Algorithm (MGDA) (Désidéri, 2012; Sener

and Koltun, 2018) have been applied to mitigate conflicting gradients by directly

optimizing towards the Pareto front. MGDA aligns task gradients to find updates

that simultaneously improve all objectives. However, MGDA lacks control over the

specific point on the Pareto front to which the algorithm converges and can experience

slow progress if any task loss gradient has a small norm.

It is important to note that while multiobjective optimization provides valuable

insights and tools, our primary focus is not on advancing this field directly. Instead,

we concentrate on optimizing a linear combination of different objectives, addressing

the challenge of conflicting gradients that arise even when optimizing a scalarized loss

function. Our work aims to develop methods that effectively handle these conflicts to

improve multitask learning performance.

7.2 Growing Neural Networks

Neural network growth has been extensively studied for both general-purpose

learning and continual learning. Early approaches focused on single-layer systems,

where neurons were incrementally added to improve performance (Ash, 1989). This

concept was extended to deep networks through methods like Cascade Correla-

tion (Fahlman and Lebiere, 1989), which optimized network topology by dynam-

ically adding neurons and connections. Evolutionary algorithms later introduced a

broader framework for optimizing network structure, as seen in work by Stanley and

Miikkulainen (2002), which applied these methods to reinforcement learning tasks.

The emergence of Deep Belief Networks popularized greedy layer-wise pre-

training using Restricted Boltzmann Machines (Hinton et al., 2006; Bengio et al.,

2006), further simplified with Stacked Denoising Autoencoders (Vincent et al., 2010).
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Recent approaches like AutoGrow (Wen et al., 2020) automate depth-growing policies

to expand networks until performance plateaus, while orthogonality-based weight

initialization strategies (Maile et al., 2022) aim to maximize the utility of added layers.

These methods, however, often focus on network size optimization without considering

trade-offs in training efficiency.

To enhance knowledge transfer, methods like Net2Net (Wei et al., 2016) and

Network Morphism (Wei et al., 2016) enable network expansion through widening

and deepening operations while preserving functional equivalence. However, these

rely on random or heuristic-based strategies for neuron selection, which may not

yield optimal architectures. Addressing this, Elsken et al. (2017) proposed evaluating

multiple candidate architectures and selecting the best-performing one, though this

approach is computationally expensive. More systematic techniques, such as Splitting

Steepest Descent (Liu et al., 2019a), optimize neuron splitting using eigenvalue-based

second-order approximations. While principled, these methods are computationally

demanding and limited to specific growth scenarios.

Network growth techniques not only optimize model performance and efficiency

but also play a significant role in continual learning scenarios, where models need to

adapt to new tasks without forgetting previous ones. In the next section, we discuss

how these methods are applied within the context of continual learning.

7.3 Continual Learning

Continual learning (CL), also known as lifelong learning or online learning,

addresses the challenge of learning sequentially over time without forgetting previ-

ously acquired knowledge. Unlike conventional deep learning methods that rely on

static datasets and fixed objectives, continual learning aims to adapt dynamically to

changing data distributions and objectives while preserving past knowledge. This dual

requirement highlights the central trade-off in CL: plasticity, or the ability to acquire

new knowledge, and stability, the capacity to retain prior knowledge (Mermillod et al.,
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2013).

Regularization-Based Methods Regularization-based methods address the stability-

plasticity dilemma by introducing constraints that preserve learned knowledge while

updating the model. These methods often treat parameters from previous tasks as pri-

ors for current tasks. For example, Elastic Weight Consolidation (EWC) (Kirkpatrick

et al., 2017) uses the Fisher information matrix to penalize deviations from previously

learned weights, effectively preserving critical knowledge. Path Integral (PI) (Zenke

et al., 2017) measures the importance of each parameter based on its contribution to

the loss, regularizing updates accordingly. Similarly, RWALK (Chaudhry et al., 2018a)

and Variational Continual Learning (VCL) (Nguyen et al., 2017) adopt probabilistic

approaches, using KL divergence to constrain updates.

More recently, backpropagation itself has been modified to include regularization

effects, such as in Continual Backpropagation (Dohare et al., 2021, 2024). However,

while these methods excel in retaining prior knowledge, they often struggle to adapt

effectively to new tasks, limiting their overall plasticity.

Memory-Based Approaches Memory-based methods store examples or represen-

tations from previous tasks to replay them during training, ensuring that updates

do not overwrite learned knowledge. Gradient Episodic Memory (GEM) (Lopez-Paz

and Ranzato, 2017) stores a small subset of past data and uses it to constrain gra-

dient updates, ensuring consistency with prior tasks. Orthogonal Gradient Descent

(OGD) (Farajtabar et al., 2020) projects task gradients onto a subspace orthogonal to

gradients from previous tasks, preserving stability.

Other approaches, such as Deep Generative Replay (DGR) (Shin et al., 2017),

train a generative model alongside the main task model to synthesize past data,

avoiding the need to store raw samples. More advanced methods like Meta-Experience

Replay (MER) (Riemer et al., 2018) use meta-learning objectives to balance stability

149



and plasticity dynamically. MEGA (Guo et al., 2019) extends GEM by optimizing

the linear combination of past and current task gradients for better task integration.

Despite their effectiveness, memory-based methods require additional storage, either

for real or synthetic data, which can limit scalability.

Architectural Growth Methods Architectural growth methods adaptively expand

the network’s capacity to accommodate new tasks, mitigating the limitations of fixed

architectures. Progressive Neural Networks (PROG-NN)(Rusu et al., 2016) lock

parameters associated with previous tasks and introduce new ones for subsequent

tasks, ensuring knowledge retention. Dynamic Expansion Networks (DEN)(Yoon et al.,

2017) combine sparse regularization with selective growth to maintain compactness

while adapting to new tasks. Other approaches, such as Learn-to-Grow (Li et al., 2019)

and Compacting-Picking-Growing (CPG) (Hung et al., 2019a), emphasize efficient

growth strategies to balance stability and plasticity.

While architectural growth methods excel at retaining prior knowledge, they

often suffer from reduced plasticity due to their reliance on fixed modules for previ-

ous tasks. Additionally, incremental expansions can lead to inefficiencies in model

utilization. Addressing these challenges, frameworks like Firefly (Wu et al., 2020a)

propose principled methods for expanding networks, optimizing growth to preserve

task performance while maintaining adaptability.

7.4 Efficient Sequence Models

Efficient sequence models have been developed to overcome the quadratic

complexity of traditional transformers, which scale poorly with sequence length. These

advancements, encompassing linear attention models and state space models, are

closely related to the principles of online learning and fast-weight programming,

bridging sequence modeling with continual learning.
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Linear Attention Models Linear attention models address the computational

inefficiencies of transformers by making attention mechanisms scale linearly with

sequence length. Linformer reduces self-attention complexity through a low-rank

approximation of keys and values, projecting them into fixed-size representations (Wang

et al., 2020). Linear Transformer replaces the softmax function with a decomposable

similarity function akin to kernel methods, achieving linear complexity by enabling

efficient computation (Katharopoulos et al., 2020). Performer improves upon this by

approximating softmax attention using positive orthogonal random features, preserving

expressiveness while maintaining efficiency (Choromanski et al., 2020).

More recently, extensions like Retentive Networks (Sun et al., 2023) and Gated

Linear Attention (Yang et al., 2023) introduce mechanisms such as constant forgetting

and learnable gates, enhancing both adaptability and retention. These models can be

conceptualized as fast-weight networks, where a slow network (the model’s parameters)

dynamically programs a fast network (e.g., a linear predictor) through input-driven

updates (Schlag et al., 2021). This dynamic weight adjustment connects linear

attention to online learning, a property crucial for continual learning.

State Space Models State Space Models (SSMs) provide a robust framework for

sequence modeling, directly leveraging linear recurrent networks that inherently sup-

port parallel computation. Originating from Kalman filtering (Kalman, 1960), which

introduced a systematic approach to prediction and correction, SSMs model dynamic

systems through a combination of state evolution equations and output relationships.

Early innovations like S4 (Gu et al., 2021) parameterized state transitions to enable

parallelism via convolution operations (Li et al., 2022), overcoming computational

bottlenecks and extending the scalability of SSMs. Theoretical advancements, such

as HiPPO (Gu et al., 2020), refined SSMs for long-sequence modeling by addressing

vanishing gradients with optimal polynomial projections, laying the groundwork for

enhanced recursive memory systems.
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Subsequent developments expanded SSM capabilities: Diagonal State Space

(DSS) (Gupta et al., 2022) simplifies parameterization while maintaining performance;

GSS (Mehta et al., 2022) optimizes gated mechanisms for long-range dependencies; and

S5 (Smith et al., 2022) refines transition matrices for expressive scalability. Additional

advancements, such as Mamba (Gu and Dao, 2023), integrate SSMs with transformer-

like architectures, introducing selection mechanisms to filter relevant information and

boost computational efficiency. Mamba demonstrates state-of-the-art results across

modalities, including language modeling and speech processing.

Efficient recurrent networks further extend the SSM paradigm. Deep Linear

Recurrent Units (LRUs) (Orvieto et al., 2023; De et al., 2024), Hierarchically Gated

Linear RNNs (HGRNs) (Qin et al., 2024b,a), and RWKV (Peng et al., 2023, 2024)

emerge as lightweight yet powerful alternatives. By balancing sequence processing

efficiency with representational power, these models eschew the need for explicit mem-

ory of past states, aligning closely with the principles of continual learning. Notable

applications, such as Vision-RWKV (Duan et al., 2024), extend SSM architectures to

tasks like computer vision, demonstrating significant gains in computational efficiency

and memory usage.

The versatility of SSMs is further underscored by their deployment across

domains. In natural language processing, models like S4++ (Qi et al., 2024) integrate

memory replay mechanisms to address dependency biases, while Dense Mamba(He

et al., 2024) enhances performance by retaining shallow information through state

transition refinements. In clinical note understanding, Mamba-based models (Yang

et al., 2024b) excel at processing long sequences, leveraging linear complexity to

handle texts of up to 16k tokens effectively. Similarly, in speech tasks, selective

state-space models (Jiang et al., 2024; Li and Chen, 2024) achieve competitive results

in noise suppression and separation tasks, underscoring SSMs’ adaptability to varied

modalities.
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Fast-Weight and Online Learning The concept of a network modifying its own

weights in response to inputs is not novel and has historical roots in the Fast-weight

Programmer (Schmidhuber, 1992, 1993; Schlag and Schmidhuber, 2017; Schlag et al.,

2021). Specifically, these models propose updating a weight matrix W ∈ Rd×m using

the outer product of two vectors, expressed as ∆W = v(xt)⊗ k(xt). This mechanism

closely aligns with the principles underlying the linear attention model. Our framework

builds upon the fast-weight concept by tailoring the weight update process to address

a specific online learning objective, thereby extending its applicability and effectiveness

in dynamic learning environments.
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Chapter 8: Conclusion and Future Directions

This section summarizes the dissertation contributions and outlines several

future research directions.

8.1 Summary of Contributions

This dissertation presents four works to address the question in Chapter 1.1:

How can one train a neural network that fulfills multiple desiderata and learns

continually? We list the four works in the following:

1. Conflict-Averse Gradient Descent (CAGrad) In Section 3, we introduce

the Conflict-Averse Gradient Descent (CAGrad) algorithm, a method designed to

mitigate the optimization challenges caused by conflicting gradients in multitask

learning. Directly optimizing a linear combination of different task losses can

lead to bad local minima of the average loss, where a subset of tasks is barely

optimized at all. This issue arises because, during each optimization step, the

gradient of the average loss may consistently have a negative correlation with

certain task gradients. As a result, the model may only perform well on a small

subset of tasks, neglecting others. To address this problem, CAGrad defines

a measure of local conflict among task gradients and computes a new update

vector at each step. This update minimizes the local conflict while remaining

close to the average gradient. By doing so, CAGrad balances the influence of

all tasks, reducing gradient conflicts while remaining convergent. Empirical

results demonstrate that CAGrad achieves strong multitask learning performance

across various benchmarks. This work was published at the Thirty-Fifth Annual

Conference on Neural Information Processing Systems (NeurIPS 2021).

2. Fast Adaptive Multitask Optimization To enhance the practicality and

reduce the computational demands of CAGrad, we developed the Fast Adaptive
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Multitask Optimization algorithm in Chapter 4. This approach significantly

simplifies the inner optimization process inherent to CAGrad by amortizing its

complexity across iterations. The result is a highly efficient MTL algorithm that

operates with O(1) space and time complexity, making it scalable and suitable

for large-scale applications. This work was published at the Thirty-Seventh

Annual Conference on Neural Information Processing Systems (NeurIPS 2023).

3. Firefly: A Framework for Neural Network Expansion Our investigation

into continual learning led to the creation of Firefly, detailed in Chapter 5. Firefly

is a framework that allows for the expansion of neural networks by making them

deeper or wider. This framework identifies and integrates new neurons that

can substantially reduce a target loss function. As a result, Firefly provides a

mechanism for growing a neural network when it reaches learning capacity or

requires adaptation to new data. This work was published at the Thirty-Fourth

Annual Conference on Neural Information Processing Systems (NeurIPS 2020).

4. Longhorn: State Space Models are Amortized Online Learners From a

different perspective than Firefly, which focuses on expanding neural network

architectures to accommodate new tasks, we investigate how to enable a neural

network with a fixed size to continually modify itself. Specifically, we focus on

sequence modeling, where the Transformer model is the dominant architecture.

Although Transformers demonstrate strong sequence modeling capabilities, they

suffer from quadratic inference costs with respect to sequence length, rendering

them impractical for indefinitely long sequences in a continual learning setting.

To address this limitation, we present Longhorn in Chapter 6, a novel sequence

modeling architecture that incorporates online learning by design. Longhorn is

based on the online associative recall objective, which prior research has identified

as the underlying mechanism of how Transformers process sequences. By deriving

the closed-form solution of this objective, we obtain a recurrent update rule

for Longhorn. This design enables Longhorn to inherently perform online
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associative recall, effectively compressing observed data even during inference.

Consequently, Longhorn maintains a constant memory size and achieves linear

inference cost with respect to sequence length, overcoming the scalability issues

of Transformers. Empirically, Longhorn demonstrates performance on par with

Transformer models, validating its effectiveness in sequence modeling tasks while

providing significant computational advantages.

These contributions represent the initial attempts to address the dissertation

question. In the next section, we point out several interesting future research directions.

8.2 Future Directions

Based on the contributions made in this dissertation, several promising future

research directions arise. Here, we categorize them into short-term and long-term

avenues. Short-term directions involve research that can directly build on the findings

of this dissertation, while long-term directions target broader challenges that could

benefit from the contributions made in this dissertation.

8.2.1 Short-term Directions

1. Efficient Multitask Learning for Large and Deep Neural Networks.

While FAMO significantly reduces the computational overhead compared to CA-

Grad, it still requires an additional forward pass to compute task weight gradients.

This remains a challenge, particularly for training extremely large models. Future

research could focus on further minimizing this overhead. Possible approaches

include hyper-gradient descent (Baydin et al., 2017) or learning-to-optimize (Li

and Malik, 2016), where the task weights are treated as hyperparameters that

can also adopt gradient descent, or one can learn a process that adapts the task

weights based on history objective values.

2. Theoretical Insights on FAMO/CAGrad with Adaptive Optimization
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Methods. In Section 3.5, we provide a theoretical analysis of CAGrad assuming

it is applied with gradient descent. However, adaptive optimization methods like

Adam (Kingma and Ba, 2014) are frequently used in practice. The interaction

between gradient manipulation methods and adaptive optimizers is still not fully

understood. Investigating this interaction could lead to novel adaptive multitask

optimization techniques.

3. Advances in Multitask Reinforcement Learning. Our experiments with

CAGrad and FAMO apply these methods atop existing reinforcement learning

(RL) algorithms such as Soft Actor Critic (Haarnoja et al., 2018). However,

multitask RL presents different challenges from multitask supervised learning.

Future research could propose specialized algorithms for decision-making prob-

lems. For example, in multitask model-based RL, different tasks may share the

same transition dynamics but with task-specific reward functions. Investigating

how to utilize this unique structure for efficient multitask model-based RL re-

mains an open question. Additionally, constraint or safe reinforcement learning

can be viewed as a form of multitask RL, but typically one loss function takes

precedence over others, framing the problem as lexicographic optimization. In

CAGrad, for instance, one could replace the average loss gradient g0 with a

specific gradient gi to optimize for a particular task loss ℓi.

4. Parameter-efficient Network Expansion. In this dissertation, we have

applied the Firefly framework to grow small or medium-sized neural networks. As

we move toward large deep neural networks, combining methods like Low-Rank

Adaptation (LoRA) (Hu et al., 2021) with Firefly presents an interesting research

opportunity. Future work could explore growing both network parameters and

“prompt tokens” in a parameter-efficient manner.

5. Adapting Firefly for Mixture of Experts. Growing a neural network

into a mixture of expert architecture (Shazeer et al., 2017) is an interesting

future direction. Specifically, one can consider adapt the Firefly algorithm to
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partition large pretrained models into a mixture of experts, each specialized in

distinct domains for enhanced performance. There are two related challenges.

First, given a team of experts and a new dataset, how should one determine

which expert(s) should adapt to this data, enabling targeted growth? Second,

for a single network that has been trained on multiple tasks, one could apply

techniques from Chapter 5 to split the network into task-specific subnetworks,

assigning tasks to maximize the expected reduction in loss across objectives.

6. Bridging the Gap Between Longhorn and Transformer Models. Trans-

formers scale memory and computation linearly with input length, whereas

Longhorn (or other state space models) achieves constant memory and compu-

tation. This raises an intriguing question: could models be designed to balance

these approaches? Such models could accumulate memory incrementally, en-

hancing support for continual learning while avoiding the linear inference cost

growth characteristic of Transformers. The main challenge in this direction is

how to implement the resulting architecture efficiently on hardware like Nvidia

GPUs.

8.2.2 Long-term Directions

This section lists two long-term research directions that align with the disser-

tation Question in Chapter 1.1 and can leverage contributions from this dissertation.

1. Distributed Multitask Pretraining. Empirical findings suggest that as

compute and data resources increase, a model’s capabilities can improve continu-

ally (Kaplan et al., 2020). If this holds, an exciting direction is to scale models by

expanding the number of tasks (or loss functions) during training. This approach

not only enhances learning efficiency—reducing the data needed to reach specific

performance levels—but also promotes agents that meet various criteria, such as

safety, robustness, and privacy preservation. Multitask pretraining is inherently

well-suited for distributed training, where multiple devices compute gradients
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for different task losses, potentially on separate datasets. Thus, an important

long-term effort lies in developing methods to efficiently harness distributed

multitask training.

2. Continual Learning for Multi-Agent Systems. Another significant long-

term research avenue is adopting continual learning for teams of agents. As deep

neural networks diversify, it is likely that multiple models will emerge within

a single domain, each specialized in distinct tasks but sharing the common

knowledge. Achieving true continual learning will require these agents to learn

collaboratively, much like human knowledge-sharing. This could potentially

evolve into a new research domain, focusing on methodologies for agents to

exchange insights and knowledge seamlessly over time.

8.3 Conclusion

This dissertation presents four works as initial attempts to address the overar-

ching question: How can we train a neural network that fulfills multiple desiderata

and learns continually?

The first part of this dissertation examines the optimization challenge in multi-

task learning (learning from multiple desiderata), focusing on the issue of conflicting

gradients that impede balanced progress across tasks. We propose two methods that

help mitigate this issue. While our proposed methods show promise in empirical

experiments, there exists much room for improvement. In particular, there lacks a

solid theoretical connection between mitigating conflicting gradients and achieving

improved average loss in multitask learning, which remains an open direction for

future exploration.

The second part addresses the problem of enabling continual learning in deep

neural networks. We first proposed a dynamic network expansion method—Firefly

Architectural Descent—that performs the steepest descent within the parameter space
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of all architectures. As a result, Firefly lets neural networks grow deeper and wider

when necessary. Next, we investigate how to design a neural network with a fixed

size, that can learn to modify itself continually. To this end, we propose the Longhorn

architecture, which incorporates online learning as an inductive bias. Empirically,

we demonstrate that Longhorn performs on par with the Transformer model while

achieving linear inference cost with respect to the sequence length, with a constant

size memory.

Collectively, these contributions represent small but meaningful steps toward

addressing specific aspects of the thesis question. They do not provide comprehensive

solutions but instead offer insights that, I hope, will inform and inspire future research.

The strategies proposed here point toward a vision of deep neural networks that evolve

continually, adapting dynamically to new tasks and environments without relying

on distinct pretraining, fine-tuning, and inference stages. Looking ahead, significant

challenges remain in realizing truly adaptable, multi-capable neural networks. I hope

the ideas and techniques presented in this dissertation, however modest in scope, will

spark further exploration and progress toward this goal.
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and Cordelia Schmid. Vivit: A video vision transformer. In Proceedings of

the IEEE/CVF International Conference on computer vision, pages 6836–6846,

2021.

Simran Arora, Sabri Eyuboglu, Aman Timalsina, Isys Johnson, Michael Poli,

James Zou, Atri Rudra, and Christopher Ré. Zoology: Measuring and improving
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